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The problem:
§ 𝑀 is a 𝑑-dimensional smooth manifold with Riemannian metric
§ Riemannian metric induces gradient grad 𝑓(𝑥), Hessian Hess 𝑓(𝑥)
§ Problem:

min 𝑓 𝑥 subject to 𝑥 ∈ 𝑀
with 𝑓 nonconvex.
§ Global minimum is hard to find.  Instead seek:
§ 𝜖-FOCP: grad 𝑓(𝑥) ≤ 𝜖
§ 𝜖-SOCP: grad 𝑓(𝑥) ≤ 𝜖, 𝜆=>? Hess 𝑓 𝑥 ≥ − 𝜌𝜖

§ Objective: Find SOCP without Hessian queries.
§ Applications:
§ numerical linear algebra - spectral decompositions, 

low-rank Lyapunov equations
§ signal and image processing - shape analysis, 

diffusion tensor imaging, community detection on 
graphs, rotational video stabilization

§ statistics and machine learning - matrix/tensor completion, metric learning, 
Gaussian mixtures, activity recognition, independent component analysis

§ robotics and computer vision - simultaneous localization and mapping, 
structure from motion, pose estimation

Optimization on manifolds:
§ To move on the manifold, use retractions:

𝑦 = RetrF 𝑠 , 𝑠 ∈ 𝑇F𝑀
§ Tangent space 𝑇F𝑀 gives possible directions
§ E.g., follow geodesics, or use metric projection 

RetrF 𝑠 =
𝑥 + 𝑠
𝑥 + 𝑠

for 𝑀 = 𝑆L

§ Riemannian gradient descent (RGD): 𝑥MNO = RetrFP −𝜂 grad 𝑓 𝑥M
§ RGD visits an 𝜖-FOCP in 𝑂 𝜖ST iterations.
§ Pullback U𝑓F ∶ 𝑇F𝑀 → ℝ: U𝑓F 𝑠 = 𝑓 RetrF 𝑠

Euclidean case (Jin, Netrapalli, Ge, Kakade, Jordan 2019):
§ Jin et al.’s setting:

min 𝑓 𝑥 subject to 𝑥 ∈ ℝL

§ Perturbed Gradient Descent:
§ If ∇𝑓(𝑥M) ≥ 𝜖, perform a GD step x[NO = x[ − 𝜂∇𝑓 𝑥M .
§ If ∇𝑓(𝑥M) < 𝜖, perturb then perform 𝒯 GD steps.
§ Visits an 𝜖-SOCP in 𝑂 𝜖ST log_(𝑑) iterations with high probability.
§ Intuition: Saddle points are unstable.
§ Proof relies heavily on vector spaces.  How to overcome this?

Our extension to smooth manifolds:
§ Make batches of steps in a single tangent space.
§ Perturbed Riemannian Gradient Descent (PRGD):
§ (a) If grad 𝑓(𝑥M) ≥ 𝜖, perform an RGD step x[NO = RetrFP −𝜂 grad 𝑓 𝑥M .
§ (b) If grad 𝑓(𝑥M) < 𝜖, enter tangent space 𝑇FP𝑀, then perturb and perform 𝒯

GD steps on the pullback U𝑓FP in that tangent space.  Retract back to manifold.

(a) (b)
§ Visits an 𝜖-SOCP in 𝑂 𝜖ST log_(𝑑) iterations with high probability.
§ Extends Jin et al.’s analysis (almost) seamlessly.

Competing Extension (Sun, Flammarion, Fazel 2019):
§ Sun et al. perform all steps on the manifold and analyze them in a 

common tangent space.
§ More natural but also more technical.
§ Similar but different regularity assumptions on 𝑓.
§ Retr = Exp: move along geodesics.
§ Iteration complexity: same dependence in 𝜖 and 𝑑; also curvature?

Details:
§ Assumptions:
§ (A1) 𝑓 is lower-bounded.
§ (A2) Gradient of the pullback is “Lipschitz” in a ball:

∇b𝑓F 𝑠 − ∇b𝑓F (0) ≤ 𝐿 𝑠 ∀𝑠 ∈ 𝑇F𝑀 with 𝑠 ≤ 𝑏.

§ (A3) Hessian of the pullback is “Lipschitz” in a ball:
∇T b𝑓F 𝑠 − ∇T b𝑓F (0) ≤ 𝜌 𝑠 ∀𝑠 ∈ 𝑇F𝑀 with 𝑠 ≤ 𝑏.

§ (A4) Second-order retraction.

§ Issue: What if tangent space iterates escape the ball of radius 𝑏?
§ Handle with Jin et al.’s improve-or-localize lemma.
§ Require 𝜖 ≤ 𝑏T𝜌.
§ So, more precisely, PRGD visits an 𝜖-SOCP in 

𝑂 max 𝜖ST, 𝑏S_ log_(𝑑) iterations with high probability.

§ PCA: max O
T
𝑥j𝐴𝑥 subject to 𝑥 ∈ 𝑆LSO , 𝐿 = l

T
𝐴 , 𝜌 = 9 𝐴 , 𝑏 = ∞.

Future Directions:
§ Role of curvature of 𝑀?
§ Adaptive scheme that doesn't need to know smoothness parameters?
§ Perturbed Stochastic Gradient Descent (PSGD, Jin et al. 2019)?
§ Running many steps in a single tangent space before retracting 

means more classical methods can be adapted. In particular, it may 
be easier to generalize:

§ Parallelized schemes
§ Coordinate descent algorithms
§ Accelerated schemes
§ See also trivializations paper by M. Lezcano Casado.


