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Setting:	ℳ is	a	Hadamard	manifold
ℳ is a complete,	simply	connected Riemannian	manifold
with	non-positive	curvature.

Euclidean	space:	ℳ = ℝ!

Hyperbolic	space

Positive	definite	matrices:	ℳ = 𝑃 ∈ 𝐑"×": 𝑃 = 𝑃$ and 𝑃 ≻ 0
with	affine-invariant	metric	 𝑋, 𝑌 % = Tr 𝑃&'𝑋𝑃&'𝑌 .

Non-example:	Sphere
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Setting:	ℳ is	a	Hadamard	manifold
ℳ is a complete,	simply	connected Riemannian	manifold
with	non-positive	curvature.

Non-example:	Sphere

Euclidean	space:	ℳ = ℝ!

Hyperbolic	space

Positive	definite	matrices:	ℳ = Σ ∈ 𝐑!×!: Σ = Σ$ and Σ ≻ 0
with	affine-invariant	metric	 𝑋, 𝑌 ( = Tr Σ&'𝑋Σ&'𝑌 .
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Applications	of	g-convexity
Minimal	enclosing	ball	(MEB)	of	set	𝐶 ⊆ ℳ (e.g.,	Arnaudon +	Nielsen)

min
!∈ℳ

max
$∈%

dist 𝑥, 𝑦

Fréchet	means	and	medians	(e.g.,	Karcher):		min
!∈ℳ

∑& dist 𝑥, 𝑥& '

Tyler’s	M-estimator	for	robust	covariance	estimation	(Weisel	+	Zhang,	Franks	+	Moitra):

min
(∈)* +

0
&

log det Σ + 𝑑 log 𝑥&,Σ-.𝑥&

Operator	scaling,	tensor	scaling,	Horn’s	problem,	Brascamp-Lieb constants,	…
• “Towards	a	theory	of	non-commutative	optimization”	-- Bürgisser,	Franks,	Garg,	Oliveira,	Walter,	
Wigderson
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Setting:	𝑓 is	g-convex
min
)∈ℳ

𝑓 𝑥

Geodesic:	the	analog	of	straight	lines	on	manifolds

𝑓 is	g-convex	if	its	restriction	𝑓 ∘ 𝛾 to	any	geodesic	𝑡 ↦ 𝛾(𝑡) is	g-convex

Alternative	characterization:	for	all	𝑥, 𝑦 ∈ ℳ
𝑓 𝑦 ≥ 𝑓 𝑥 + ⟨∇𝑓 𝑥 , exp!$% 𝑦 ⟩

Exponential	map:	for	𝑥 ∈ ℳ and	𝑣 ∈ T)ℳ,	
𝛾 𝑡 = exp! 𝑡𝑣 is	the	geodesic	with	𝛾 0 = 𝑥, 𝛾, 0 = 𝑣.

ℳ

𝛾
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A few “issues”	with	g-convexity

Alternative	characterization: for all 𝑥, 𝑦 ∈ ℳ
𝑓 𝑦 ≥ 𝑓 𝑥 + ⟨∇𝑓 𝑥 , exp!$% 𝑦 ⟩

Each	“basis”	function	𝑦 ↦ 𝑓 𝑥 + ⟨∇𝑓 𝑥 , exp!$% 𝑦 ⟩ is	NOT	g-convex!

No	necessary	and	sufficient	interpolation	conditions

G-convex hulls of	even	3	points	are	not	even	closed	(for	“generic”	manifolds)



A few “issues”	with	g-convexity
Each	“basis”	function	𝑦 ↦ 𝑓 𝑥 + ⟨∇𝑓 𝑥 , exp!$% 𝑦 ⟩ is	NOT	g-convex!

No	necessary	and	sufficient	interpolation	conditions

G-convex	hulls	of	even	3	points	are	not	even	closed,	for	“generic”	manifolds
(Lytchak+Petrunin 2021)

Complexity	of	all	algorithms	depend	on	curvature	𝜁 of	the	manifold,	e.g.:
• Sub-gradient	descent:	𝑂 𝜁/𝜖&

• Nesterov acceleration:	𝑂 𝜁/𝜖
(To	find	a	point	with	relative	accuracy	𝜖 ∈ 0,1 .)
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Next:	

• We	propose	and	study	a	function	class	which	generalizes	Euclidean	
convexity,	and	resolves	all	these	issues

• Downside: the	function	class	is	smaller,	so	covers	less	examples



Horo-convexity
Starting	observations:	
• Each	“basis”	function	𝑦 ↦ 𝑓 𝑥 + ⟨∇𝑓 𝑥 , exp!"# 𝑦 ⟩ is	NOT	g-convex
• 𝜇-strongly	convex functions are	suprema	of squared	distance	functions:

𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 , 𝑦 − 𝑥 +
𝜇
2 𝑦 − 𝑥 $

= 𝑓 𝑥 − #
$%

∇𝑓 𝑥 $ + %
$
𝑦 − 𝑥&& $ where	𝑥&& = 𝑥 − #

%
∇𝑓(𝑥).

• Squared	distance	𝑥 ↦ %
$
dist$(𝑥, 𝑝) is	𝜇-strongly	g-convex.

(Definition)	For	𝜇 > 0,	𝑓 is	𝜇-strongly	horo-convex	if	it	is	a	supremum	of	squared	distance	functions	of	the	form	
y ↦ 𝑐𝑜𝑛𝑠𝑡 + %

$
dist$(𝑦, 𝑥).

If	𝑓 is	differentiable,	𝑓 is	𝜇-strongly	horo-convex	iff
𝑓 𝑦 ≥ 𝑓 𝑥 −

1
2𝜇

∇𝑓 𝑥 $ +
𝜇
2
dist$(𝑦, 𝑥&&)

where	𝑥&& = exp! − #
%
∇𝑓(𝑥) .
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𝜇 = 0?		Take	the	limit!



Horo-convexity
(Definition)	Given	any	unit-speed	geodesic	𝛾,	the	corresponding	Busemann function	is	

𝐵" 𝑥 = lim
#→%

dist 𝛾 𝑡 , 𝑥 − 𝑡

• Very	well-studied	with	remarkable	properties	– g-convex,	1-Lipschitz,	gradient	flow	is	
geodesics,	and	more!

• Generalizes	affine	functions!

(Definition)	𝑓 is	horo-convex	if	it	is	a	supremum	of	scaled	Busemann functions	of	the	form
𝑥 ↦ 𝑎 𝐵" 𝑥 , 𝑎 ≥ 0

If	𝑓 is	differentiable,	𝑓 is	horo-convex	iff
𝑓 𝑦 ≥ 𝑓 𝑥 + 𝐵!, ∇( ! 𝑦 .

Horoballs	are	the	sublevel	sets	of	Busemann functions.
• They	are	distinct	from	geodesic	half-spaces!
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If	𝑓 is	differentiable,	𝑓 is	horo-convex	iff
𝑓 𝑦 ≥ 𝑓 𝑥 + 𝐵!, ∇( ! 𝑦 .
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“Horoballs	and	the	subgradient method”	-- Lewis,	Lopez-Acedo,	Nicolae	
2024

“Horoball	Hulls	and	Extents	in	Positive	Definite	Space”	-- Fletcher	et	al.	
2011

“Abstract	convexity	and	global	optimization”	-- Rubinov



A few properties	of	horo-convexity
When	ℳ = ℝ' ,	is	just	Euclidean	convexity.

All	horo-convex	functions	are	g-convex	(but	not	vice	versa!)

Distances	𝑥 ↦ distN(𝑥, 𝑦) are	horo-convex,	𝑝 ≥ 1.

Moreau	envelope	of	horo-convex	function	gives	a	smooth	horoconvex function	(with	
all	the	usual	properties)

𝑓O 𝑥 = min
P∈ℳ

𝑓 𝑦 +
1
2𝑡
distQ 𝑥, 𝑦

Big	caveat:	not	closed	under	addition!
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Distances	𝑥 ↦ distN(𝑥, 𝑦) are	horo-convex,	𝑝 ≥ 1.

Moreau	envelope	of	horo-convex	function	gives	a	smooth	horoconvex function	(with	
all	the	usual	properties)

𝑓O 𝑥 = min
P∈ℳ
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1
2𝑡
distQ 𝑥, 𝑦

Big	caveat:	not	closed	under	addition!	(unlike	g-convex	functions)
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Applications	of	g-convexity
Minimal	enclosing	ball	(MEB)	of	set	𝐶 ⊆ ℳ (e.g.,	Arnaudon +	Nielsen)

min
!∈ℳ

max
$∈%

dist 𝑥, 𝑦

Fréchet	means	and	medians	(e.g.,	Karcher):		min
!∈ℳ

∑& dist 𝑥, 𝑥& '

Tyler’s	M-estimator	for	robust	covariance	estimation	(Weisel	+	Zhang,	Franks	+	Moitra):

min
(∈)* +

0
&

log det Σ + 𝑑 log 𝑥&,Σ-.𝑥&

Operator	scaling,	tensor	scaling,	Horn’s	problem,	Brascamp-Lieb constants,	…
• “Towards	a	theory	of	non-commutative	optimization”	-- Bürgisser,	Franks,	Garg,	Oliveira,	Walter,	
Wigderson

Horoconvex!

Sum	of	horoconvex!

Sum	of	horoconvex!



Complexity	of	horo-convex	optimization
min
!∈ℳ

𝑓 𝑥 =∑&∈[.,1]𝑓& 𝑥 where	each	𝑓& is	horo-convex

• Oracle	access	to	subproblems	(omitted).
• When	𝑚 = 1,	amounts	to	oracle	access	to 𝑓 𝑥 , ∇𝑓(𝑥) .

All	convex	algorithms	generalize	easily	to	the	horo-convex	case,	
with	exactly	the	same	rates,	and	same	step	sizes!

Subgradient descent:	𝑂(1/𝜖3)
Nesterov accelerated	gradient	descent:	𝑂 1/𝜖

No	dependence	on	curvature	𝜻!

And	proofs	are	all	straightforward.		Contrast	this	with	g-convex	acceleration:	much	more	delicate!
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For	MEB:	get	the	best	known	rate	of	min !
"!
, ! #$%(!)⋅)*+, -

"
to	reach	relative	accuracy	𝜖.



Interpolation:	g-convex
A	collection	of	function	values	and	tangent	vectors	 𝐹R, 𝑥R, 𝑔R RS'T is	interpolated	by	a	
g-convex	function	𝑓 if	𝑓 𝑥R = 𝐹R and	𝑔R ∈ 𝜕𝑓 𝑥R for	all	𝑖.

A	convex	function	interpolates	 𝐹R, 𝑥R, 𝑔R RS'T if	and	only	if

𝐹U ≥ 𝐹R + 𝑔R, 𝑥U − 𝑥R for all 𝑖, 𝑗

For	g-convex	functions	the	analogous	naïve	necessary	conditions	are	not sufficient	
for	interpolation	even	for	just	3	points:
• There	exists	 𝐹. , 𝑥. , 𝑔. ./0

1 such	that	𝐹2 ≥ 𝐹. + 𝑔. , log3" 𝑥2 for all 𝑖, 𝑗,	yet	this	data	cannot	be	
interpolated	by	a	g-convex	function.
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Interpolation:	horo-convex
Nec&suff	interpolation	conditions	for	horo-convex	functions:

𝐹K ≥ 𝐹L + 𝐵M!,N!(𝑥K) for all 𝑖, 𝑗

Nec&suff interpolation	conditions	for	𝐿-smooth	horo-convex	function:

𝐹: ≥ 𝐹; +
𝑔; &

2𝐿 +
𝑔:

&

2𝐿 + 𝐵!*,<* exp!+ −
𝑔:
𝐿 for all 𝑖, 𝑗.

Surprising	because	no	known	notion	of	Fenchel conjugate!
Obtained	through	the	Moreau	envelope.
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Conclusions	and	future	directions
Summary:	
• Proposed	and	studied	a	generalization	of	convex	functions	to	Hadamard	manifolds
• Geometrically	very	natural
• Curvature	independent	rates,	and	faster	algos	for	MEB
• Nec&suff interpolation	conditions

Questions:
• Duality?
• PEP	for	horo-convex	functions?	[to	help	answer	lower	bound	questions?]
• Inner	characterization	of	horoconvexity?
• Original	motivation:	Operator	scaling,	tensor	scaling,	Horn’s	problem,	Brascamp-
Lieb constants,	…
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• Geometrically	very	natural
• Curvature	independent	rates,	and	faster	algos	for	MEB
• Nec&suff interpolation	conditions

Questions:
• Duality?	(boundary	at	infinity	…)
• PEP	for	horo-convex	functions?	(to	help	answer	lower	bound	questions?)
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Appendix



The	oracle



Nesterov Accelerated	Gradient	Method



Smooth	horo-convex	interpolation


