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M is a complete, simply connected Riemannian manifold
with

Non-example: Sphere

Euclidean space: M’ = R¢

Hyperbolic space

Positive definite matrices: M = {£ € R*¢:3x = 3T and £ > 0}
with affine-invariant metric (X, Y)y = Tr(Z71XZ~1Y).
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Applications of g-convexity

(MEB) of set C € M (e.g., Arnaudon + Nielsen)

min max dist(x
XEM yeC ( ,}7)

(e.g., Karcher): Jrcrég\r/} 2 dist(x, x;)P

Tyler’s M-estimator for (Weisel + Zhang, Franks + Moitra):

: Ty—1,.
Zer%)llljr(ld)z logdetX + d log(xl- ) xl)
l

Operator scaling, tensor scaling, Horn’s problem, Brascamp-Lieb constants, ...

* “Towards a theory of non-commutative optimization” -- Buirgisser, Franks, Garg, Oliveira, Walter,
Wigderson
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Each “basis” function y & f(x) + (Vf(x), expz1(y) ) is NOT g-convex!
No necessary and sufficient interpolation conditions

G-convex hulls of even 3 points are for “generic” manifolds
(Lytchak+Petrunin 2021)

Complexity of all algorithms depend on of the manifold, e.g.:

e Sub-gradient descent: 0({/€?) Can really be important!

* Nesterov acceleration: 0(\/ (/6) Tensor scaling, Horn’s problem,
(To find a point with € E (0,1)_) Brascamp-Lieb constants, ...




Next:

 We propose and study a function class which generalizes Euclidean
convexity, and resolves all these issues

* Downside: the function class is smaller, so covers less examples




Horo-convexity

Starting observations:
« Each “basis” function y » f(x) + (Vf(x), expy1(y) ) is NOT g-convex
e u-strongly convex functions are i ;
FO) 2 FO) +(VF GO,y =) +5 lly = xI1
1
=00 =3 IVFCOI + 51y —x ™2 wherex™ =x — S Vf(x).

* Squared distance x —» gdist2 (x,p) is u-strongly g-convex.



Horo-convexity

Starting observations:
« Each “basis” function y » f(x) + (Vf(x), expy1(y) ) is NOT g-convex
e u-strongly convex functions are i ;
FO) = fG) +(TF G0,y =) + 5 lly = x2
1 1
= fG) = IVFGOII® + “lly = x| where x*™* = x — 2Vf (x).

* Squared distance x —» gdist2 (x,p) is u-strongly g-convex.

(Definition) Foru > 0, f if it is a supremum of squared distance functions of the form
y & (const) + gdist2 (v, x).



Horo-convexity

Starting observations:

« Each “basis” function y = f(x) + (Vf(x),expz1(y) ) is NOT g-convex
e u-strongly convex functions are ;
FO) 2 f@) +(Tf GO,y =) + 5 lly = 211

1
= f0) = IVf I + 51y —x**I2 wherex™ =x — > Vf(x).

* Squared distance x —» gdist2 (x,p) is u-strongly g-convex.
(Definition) Foru > 0, f if it is a supremum of squared distance functions of the form
y & (const) + gdist2 (v, x).

If f is differentiable, f is u-strongly horo-convex iff1
K.
fO) = fG) -5 IVFGOII® +5 dist® @y, x ™)

++ _ _ 1
where x™" = expx( qu(x)).



Horo-convexity

Starting observations:

« Each “basis” function y = f(x) + (Vf(x),expz1(y) ) is NOT g-convex
e u-strongly convex functions are ;
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* Squared distance x —» gdist2 (x,p) is u-strongly g-convex.
(Definition) Foru > 0, f if it is a supremum of squared distance functions of the form
y & (const) + gdist2 (v, x).

If f is differentiable, f is u-strongly horo-convex iff1
K.
fO) = fG) -5 IVFGOII® +5 dist® @y, x ™)

where x** = exp, (— in(x)).
u = 0?7 Take the limit!
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(Definition) Given any unit-speed geodesic y, the corresponding is

B, (x) = lim (dist(y (¢),x) — t)

* Very well-studied with remarkable properties - g-convex, 1-Lipschitz, gradient flow is
geodesics, and more! (Ballman 1995, Bridson+Haefliger 2013)

(with gradient norm = 1)
(Definition) f if it is a supremum of Busemann functions of the form

x+aB,(x),a=0

If f is differentiable, f is horo-convex iff
f) = f(x) + By vrao (V).

are the sublevel sets of Busemann functions.
* They are distinct from geodesic half-spaces!



“Horoballs and the subgradient method” -- Lewis, Lopez-Acedo, Nicolae
2024

“Horoball Hulls and Extents in Positive Definite Space” -- Fletcher et al.
2011

“Abstract convexity and global optimization” -- Rubinov
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A few properties of horo-convexity

When M = RY, is just Euclidean convexity.
All horo-convex functions are g-convex (but not vice versa!)
Distances x — distP(x, y) are horo-convex, p > 1.

of horo-convex function gives a smooth horoconvex function (with
all the usual properties)

— mi T
fe(x) —§nelﬂr}{f(y)+2—tdlst (x,y)}

Big caveat: not closed under addition! (unlike g-convex functions)



Applications of g-convexity

(MEB) of set C € M (e.g., Arnaudon + Nielsen)

min max dist(x :
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Operator scaling, tensor scaling, Horn’s problem, Brascamp-Lieb constants, ...
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Complexity of horo-convex optimization

n&r/} f(x) = Xiepr,my fi(x) where each f; is horo-convex
J ,

 Oracle access to (f;1(x), Vf1(x)), ..., (fm(x), Vi (X))

All convex algorithms generalize easily to the horo-convex case,
with exactly the same rates, and same step sizes!

Subgradient descent x4 = expy, (—1kJi): 0(1/€?)
Nesterov accelerated gradient descent: 0(\/ 1/ e)

No dependence on curvature (!

For MEB: get the of min {n nylog(n) poty (O} to reach relative accuracy e.

€2’ €
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Interpolation: g-convex

A collection of function values and tangent vectors (F;, x;, g;) i is interpolated by a
g-convex function f if f(x;) = F; and g; € df (x;) for all i.

A function interpolates (F;, x;, g;) ™+

F; = F; + (gi,xj — xi) foralli,j

For functions the analogous
for just 3 points:

* There exists (F;, x;, g;);-, such that F; = F; + <gi, logy, (xj) > for all i, j, yet this data cannot be
interpolated by a g-convex function.
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Interpolation: horo-convex

Nec&suff interpolation conditions for horo-convex functions:
F; =2 F; + By, 4,(x;) forall i,

Nec&suff interpolation conditions for L-smooth horo-convex function:

lg:lz gl g, N
F, = F; + glL +H 2][” + By, g; (expxj (_T])) forall i,j.

Surprising because no known notion of Fenchel conjugate!
Obtained
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Conclusions and future directions

Summary:

* Proposed and studied a generalization of convex functions to Hadamard manifolds
* Geometrically very natural

* Curvature independent rates, and faster algos for MEB

* Nec&suff interpolation conditions

Questions:

* Duality? (boundary at infinity ...)

* PEP for horo-convex functions? (to help answer lower bound questions?)
 Inner characterization of horo-convexity?

* Original motivation: Operator scaling, tensor scaling, Horn's problem, Brascamp-
Lieb constants, ...
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The oracle

5.2 Gradient Methods

In this subsection, we study a generalization of gradient descent for solving the h-convex
optimization problem (7). On the Euclidean space M = R", given step sizes s; > 0, the
gradient descent updates iterates as zx11 = zx — sgV.f(xx), or equivalently:®

. 1
Tk, = argmingpn {— |lzs — m||2 + (Vf(zg),z — :z:k)} )

2Sk
We generalize this algorithm to arbitrary Hadamard manifolds M by replacing the squared
norm with the squared distance on manifolds, and replacing the linear function (V f;(zx), x—
) with the scaled Busemann function By, (Zx):

(zk)

: 1
Th+1 = argmingc {2—Skd Th, T Z By () (Z )} (8)

When the objective function is a single h-convex function (m = 1), this algorithm simplifies
to zp41 = exp,, (—skVf(zy)), a well-known form of the Riemannian gradient descent.
While the oracle complexity of gradient descent for minimizing g-convex functions was
studied to depend on the lower bound of sectional curvature (Zhang and Sre, 201€), we
show here that curvature-free convergence rates are achievable when the objective function
is the sum of h-convex functions.



Nesterov Accelerated Gradient Method

Non-strongly convex case. When pu = 0, the accelerated gradient method updates the
iterates as follows:

Yk = Tk + k+1(zk—$k)
1
Thi1 = Yk — —Vf(yk) (11)
k+1
2kl = 2k — va(yk)

starting at an initial point o = z9. To solve the h-convex optimization problem (7), we
propose the following generalization of this algorithm:

2
Y = expzk k—H logzk (Zk)

Tk+1 = €XPy, (—%Vf(yk)) (12)

, 1 ILERE
Rk+1 = argmin, - s {éd(z> zk 2L m Z ylmvfz(yk) }

In particular, when m = 1, the updating rule for z; simplifies to

k+1
Zk41 = €XPy, <_ VByk,Vf(yk)(zk)>

Theorem 18 The algorithm (12) satisfies
. 2L
flen) — f(z") <

N2 “d(zo, z*)%



Smooth horo-convex interpolation

Claim 1: Consider the data D = {(;, g;, fi) }i=1.....n, and define the data

.....

~

D = { (&, §i ]'c') - (ex (_&) T g, fi— “92”2)
B BEHIB) = Pa; L’ z;,— 3 90 Ji 2L i=1 n.

.....

If D is interpolated by a g-convex function f then D is interpolated by the g-convex function f(z) = minycp{f(y) + Ld(z,y)?} [a Moreau

envelope!]. fis L-B-smooth. If fis B-convex then f is B-convex.



