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Question

[s there a algorithm for
optimization with exact oracles?

Short answer:

Slightly longer answer: We show there are Riemannian manifolds and
regimes where gradient descent is optimal (worst-case complexity).

Builds on work of who show the answer is no
when algorithms receive information.

Hamilton and Moitra: “A No-Go Theorem for Acceleration in the Hyperbolic Plane” (2021)
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Geodesically convex optimization

min f (x)

Search space D is a subset of a Riemannian manifold M

For each x,y € D, there is a unique minimizing geodesic t - y(t) contained
in D, connecting x, y.

Cost f is
te f(y®)

is convex for any geodesic y in D.



Strong geodesic convexity

f is inD c M if:yu > 0and ¢t~ f(y(t)) is u-strongly
convex for any geodesicy in D

* critical points are global minimizers for g-convex functions

* strongly g-convex functions have a unique minimizer
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Hadamard manifolds

Complete, simply connected, with
Unique minimizing geodesics between any pair of points

X - %dist(x, p)? is 1-strongly g-convex
Euclidean space: M’ = R¢
Hyperbolic space
Positive definite matrices: M = {P € R"": P = P and P > 0}

with affine-invariant metric (X, Y)p = Tr(P~1XP~1Y).
Fisher-Rao metric for covariance matrices of Gaussian distributions
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Computational task

Geodesic ball B = B(xpf, ) of radius r in Hadamard space M.

You know:
* fis in B and in M’;
* f has a unique minimizer x* in B.

You can query an oracle at x to get f(x),V f(x)

(exact info, no noise). .
ref

Task: find a ball of radius /5 containing x™.

Condition number

Least number of oracle queries necessary?
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Gradient Descent (GD)
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Nesterov’s Accelerated Gradient method (NAG)
Vi =X + (1 —0)vy
X1 = Yie =NV (k)
Vk+1 = Xk+1 — Xk
oracle queries.

.A

Xref

Condition number




What happens in R%?

If

Gradient Descent (GD)
Xie41 = X — NV (x)
oracle queries.

Nesterov’s Accelerated Gradient method (NAG)
Vi =X + (1 —0)vy
X1 = Yie =NV (k)
Vk+1 = Xk+1 — Xk
oracle queries.

NAG has optimal oracle complexity; GD does not.

.A

Xref

Condition number
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Optimal methods

What about on Riemannian manifolds?

(when for example M is a
hyperbolic space).

Xk+1 = €XPy, (—7 grad f(xx))

[s there an algorithm using only queries in general?



Main results

Let M be a Hadamard manifold of dimension d = 2 whose sectional curvatures are in
the interval

Let — C2 /WI_KIO'




Main results

For every algorithm A, there is a C* function f which is
* 1-strongly g-convex in all of M;

* k-smooth in the geodesic ball B (x¢rigin, 7);

* and has (unique) minimizer in B (Xorigin, 7);
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Other settings

nXn positive definite matrices with affine-invariant metric.

Smooth nonstrongly g-convex optimization (u = 0).
There are regimes where GD is optimal.

Nonsmooth g-convex optimization.



Negative curvature

Geodesic balls can have very large volume.

Property first highlighted for lower
bounds by :



Negative curvature

Geodesic balls can have very large volume.

Property first highlighted for lower
bounds by :

N = 90D djsjoint balls of radius r/5
contained in every ball of radius 7.

Ball of radius r
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Proof technique

Hamilton and Moitra consider the

functions

1
X - Edist(x, zj)z,j =1,..,N

Show that in expectation (over noisiness
of queries), any algorithm makes at most
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Proof technique Ball of radius

Hamilton and Moitra consider the

functions ) @ @ @
(X,Zj)z,j — 1, ,N

x + —dist
2 (O
Gradients of these functions point Q
directly towards the minimizer Q Q

* Ok if there is noise
* A problem if queries are

Ball of radius g

(exponentially many of these)



Proof technique

Our solution:
The hard functions we consider are squared distance functions plus a

1
X B Edist(x, Zj)z + H; . (x), HHess H; (x)‘ < -—.

For any algorithm, the perturbation H; ; is constructed
using a
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Proof technique

Our solution:
Perturbation is a

One bump function h; ,,, is added for each query made by the algorithm.

37



Proof technique

Our solution:
Perturbation is a

One bump function h; ,,, is added for each query made by the algorithm.

Support of the bump h; ,,, is centered at the the query x,,.



What we know (for hyperbolic spaces)

K




Future directions

Tighter upper/lower bounds
Randomized algorithms which receive exact information?

Ellipsoid method?
Interior-point methods?



Appendix



Main results

nXxn positive definite matrices with affine-invariant metric

42



Main results

[t is Hadamard, but does not satisfy assumptions of previous
theorem: sectional curvature can be zero.



Main results

[t is Hadamard, but does not satisfy assumptions of previous
theorem: sectional curvature can be zero.

Still, can prove the lower bound (2 (l o8 K).
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Nonstrongly g-convex case

Can also show that acceleration is impossible in the nonstrongly g-
convex case (u = 0).

Have the lower bound for finding a point x with

Means a version of RGD is optimal.

Compare with NAG, which uses at most



Applications

Fréchet mean (intrinsic averaging on Hadamard spaces) (e.g., Karcher)

Gaussian mixture models (Hosseini + Sra)

Optimistic likelihoods for Gaussians (Nguyen et al.)

Robust Covariance estimation (Weisel + Zhang, Franks + Moitra)

Metric learning (Zadeh et al.)

Variants on PCA (Tang + Allen) [MLEs for matrix normal models]

Operator/tensor scaling (Allen Zhu et al., Burgisser et al.)

* Brascamp-Lieb constants, computational complexity, polynomial identity testing,
hardness of robust subspace recovery, etc.

* Tree-like embeddings (Bacak)
* Sampling on Riemannian manifolds (Goyal + Shetty)

* Landscape analysis (e.g., Ahn + Suarez)



Application: robust covariance estimation

[ID samples x; € RP,i = 1, ...,n, coming from an elliptical distribution:
x ~uXl2y

where X > 0 is fixed (the shape matrix), u is a scalar r.v,, and v ~ SP~1.



Application: robust covariance estimation

[ID samples x; € RP,i = 1, ...,n, coming from an elliptical distribution:
x ~uXl2y

where X > 0 is fixed (the shape matrix), u is a scalar r.v,, and v ~ SP~1.
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¥ = argmin 2 log(x;' Z71x;) + log det(X)
>0, Tr(®)= pTl

Can also be derived as an MLE.



Application: robust covariance estimation

[ID samples x; € RP,i = 1, ...,n, coming from an elliptical distribution:
x ~uXl2y

where X > 0 is fixed (the shape matrix), u is a scalar r.v,, and v ~ SP~1.

Tyler’s M-estimator for the shape matriX'

¥ = argmin 2 log(x;' Z71x;) + log det(X)
>0, Tr(®)= pTl

[s for PD matrices (with affine-invariant metric).

— new algorithms/analysis + analysis for Tyler’s iterative procedure



Application: robust covariance estimation

[ID samples x; € RP,i = 1, ...,n, coming from an elliptical distribution:
x ~uXl2y

where X > 0 is fixed (the shape matrix), u is a scalar r.v,, and v ~ SP~1.

Tyler’s M-estimator for the shape matriX'

¥ = argmin 2 log(x;' Z71x;) + log det(X)
>0, Tr(®)= pTl

[s a specific instance of the operator scaling problem.

Sources: Weisel + Zhang, Franks + Moitra



