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Question

Is	there	a	fully	accelerated	first-order algorithm	for	
geodesically convex	optimization	with	exact	oracles?

Short	answer:	No.
Slightly	longer	answer:	We	show	there	are	Riemannian	manifolds	and	
regimes	where	gradient	descent	is	optimal	(worst-case	complexity).
Why?	The	volume	of	a	ball	in	negatively	curved	spaces	is	very	large.
Builds	on	work	of	Hamilton	and	Moitra	(2021),	who	show	the	answer	is	no	
when	algorithms	receive	noisy information.

6Hamilton	and	Moitra:	“A	No-Go	Theorem	for	Acceleration	in	the	Hyperbolic	Plane”	(2021)



Geodesically	convex	optimization

min!∈# $ %

Search	space	& is	a	g-convex subset	of	a	Riemannian manifold	ℳ:
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Strong	geodesic	convexity
+ is	,-strongly	g-convex	in	% ⊂ ℳ if:	, ≥ 0 and	& ↦ + ( & is	,-strongly	
convex	for	any	geodesic	( in	%

+ # ≥ + ! + grad + ! , exp!"# # +
,

2
dist !, # $ for all !, # ∈ %.

• critical	points	are	global	minimizers	for	g-convex	functions

• strongly	g-convex	functions	have	a	unique	minimizer
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Hadamard	manifolds
Complete,	simply	connected,	with	non-positive	(intrinsic)	curvature.

Unique	minimizing	geodesics	between	any	pair	of	points

! ↦ !
"dist !, (

" is	1-strongly	g-convex
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Computational	task
Geodesic	ball	) = )(!#$%, ,) of	radius	, in	Hadamard	space	ℳ.

You	know:
• / is	0-smooth	in	) and 1-strongly	convex	in	ℳ;
• / has	a	unique	minimizer	!∗ in	).

You	can	query	an	oracle	at	! to	get	/(!), ∇ /(!)
(exact	info,	no	noise).

Task:	find	a	ball	of	radius	,/5 containing	!∗.

Least	number	of	oracle	queries	necessary?

K

!*+,
L
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What happens inℝ!?
If	ℳ = ℝ):

Gradient	Descent	(GD)
!*+! = !* − 9∇/ !*

: 6 oracle	queries.

Nesterov’s	Accelerated	Gradient	method	(NAG)
;* = !* + 1 − > ?*
!*+! = ;* − 9∇/ ;*
?*+! = !*+! − !*

@: 6 oracle	queries.

NAG	has	optimal	oracle	complexity;	GD	does	not.

!.
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Optimal	methods
What	about	on	Riemannian	manifolds?

Riemannian	GD	(RGD)	requires	M N oracle	queries (when	for	example	ℳ is	a	
hyperbolic	space).

!./# = exp!!(−P grad +(!.))

Is	there	an	algorithm	using	only	 QM N queries	in	general?
Riemannian	NAG?
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Main	results
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Let	ℳ be	a	Hadamard	manifold	of	dimension	A ≥ 2whose	sectional	curvatures	are	in	
the	interval	[K,-, K./]with	K./ < 0.
Let	, = I" 6 / −J,-.

For	every	deterministic	algorithm	K,	there	is	a	L0 function	/ which	is	
• 1-strongly	g-convex	in	all	of	ℳ;
• 6-smooth	in	the	geodesic	ball	)(!1#2324, ,);
• and	has	(unique)	minimizer	in	)(!1#2324, ¾ ,);
such	that	algorithm	K requires	at	least

Ω
J./
J,-

6
log 6

queries	in	order	to	find	a	point	! ∈ ℳ within	,/5 of	the	minimizer	of	/.

For	hyperbolic	spaces,	
0!" = 0#$ = 0 < 0
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6
log 6

queries	in	order	to	find	a	point	! ∈ ℳ within	,/5 of	the	minimizer	of	/.

+ , rate	is	impossible;
RGD	is	optimal	(up	to	log).⟹



Other	settings
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!×! positive	definite	matrices with	affine-invariant	metric.

Smooth	nonstrongly g-convex	optimization	($ = 0).
There	are	regimes	where	GD	is	optimal.

Nonsmooth g-convex	optimization.
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Negative	curvature
Geodesic	balls	can	have	very	large	volume.

Property	first	highlighted	for	lower	
bounds	by	Hamilton	and	Moitra.

R = S4(6%) disjoint	balls	of	radius	L/5
contained	in	every	ball	of	radius	L.



31

Negative	curvature
Geodesic	balls	can	have	very	large	volume.

Property	first	highlighted	for	lower	
bounds	by	Hamilton	and	Moitra.

R = S4(6%) disjoint	balls	of	radius	L/5
contained	in	every	ball	of	radius	L.

Ball	of	radius	!"
(exponentially	many	of	these)	

'#

Ball	of	radius	(

'$
'%



Proof	technique

32

Hamilton	and	Moitra	consider	the	
functions

% ↦ 1
2dist %, 2$

%, 3 = 1, … , 6

Show	that	in	expectation	(over	noisiness	
of	queries),	any	algorithm	makes	at	most	
limited	progress	per	query.

Since	6 = 7&(()),	they	get	the	lower	
bound	Ω +

,-. + . Ball	of	radius	!"
(exponentially	many	of	these)	

Ball	of	radius	(

'#
'$
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Hamilton	and	Moitra	consider	the	
functions

% ↦ 1
2dist %, 2$

%, 3 = 1, … , 6

Gradients	of	these	functions	point	
directly	towards	the	minimizer

• Ok	if	there	is	noise
• A	problem	if	queries	are	exact

Ball	of	radius	!"
(exponentially	many	of	these)	

Ball	of	radius	(

'#
'$

'%
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Our	solution:
The	hard	functions	we	consider	are	squared	distance	functions	plus	a	
perturbation	

( ↦ 1
2dist (, 1)

* +3),, ( , Hess 3),, ( ≤ 1
2 .

For	any	algorithm,	the	perturbation	3),, is	constructed	adversarially
using	a	resisting	oracle.



Proof	technique

36

Our	solution:
Perturbation	is	a	sum	of	bump	functions

H),, ( = 8
-./

,
ℎ),-

One	bump	function	ℎ),- is	added	for	each	query	made	by	the	algorithm.

Support	of	the	bump	ℎ),- is	centered	at	the	the	query	(- .noise	in	proof	
of	Hamilton	and	Moitra.
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1000

1
1

0

: ≈ 5 −7

What	we	know	(for	hyperbolic	spaces)



Future	directions
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Tighter	upper/lower	bounds

Randomized	algorithms	which	receive	exact	information?

Ellipsoid	method?
Interior-point	methods?
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Appendix



Main	results

42

!×! positive	definite	matrices with	affine-invariant	metric

It	is	Hadamard,	but	does	not	satisfy	assumptions	of	previous	
theorem:	sectional	curvature	can	be	zero.

Still,	can	prove	the	lower	bound	Ω /
1

2
345 2 .
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Nonstrongly g-convex	case
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Can	also	show	that	acceleration	is	impossible	in	the	nonstrongly	g-
convex	case	($ = 0).
Have	the	lower	bound	Ω /

6 ⋅
/

345! 6"# for	finding	a	point	( with	
< ( − < (7 ≤ >.

Means	a	version	of	RGD	is	optimal.

Compare	with	NAG,	which	uses	at	most	? /
6 queries	in	Euclidean	

spaces.	
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Applications
• Fréchet	mean	(intrinsic	averaging	on	Hadamard	spaces)	(e.g.,	Karcher)
• Gaussian	mixture	models	(Hosseini	+	Sra)
• Optimistic	likelihoods	for	Gaussians	(Nguyen	et	al.)
• Robust	Covariance	estimation	(Weisel	+	Zhang,	Franks	+	Moitra)
• Metric	learning	(Zadeh	et	al.)
• Variants	on	PCA	(Tang	+	Allen)	[MLEs	for	matrix	normal	models]
• Operator/tensor	scaling	(Allen	Zhu	et	al.,	Burgisser	et	al.)

• Brascamp-Lieb	constants,	computational	complexity,	polynomial	identity	testing,	
hardness	of	robust	subspace	recovery,	etc.

• Tree-like	embeddings	(Bacak)
• Sampling	on	Riemannian	manifolds	(Goyal	+	Shetty)
• Landscape	analysis	(e.g.,	Ahn	+	Suarez)
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Application:	robust	covariance	estimation
IID	samples	!< ∈ ℝ=, W = 1,… , Y,	coming	from	an	elliptical	distribution:

! ∼ [ Σ#/$]
where	Σ ≻ 0 is	fixed	(the	shape	matrix),	[ is	a	scalar	r.v.,	and	] ∼ ^="#.

Tyler’s	M-estimator	for	the	shape	matrix:

_Σ = argmin
?≻A, C* ? D=

a

Y
b

<D#

&
log !<

(Σ"#!< + log det Σ

Can	also	be	derived	as	an	MLE.
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Application:	robust	covariance	estimation
IID	samples	!< ∈ ℝ=, W = 1,… , Y,	coming	from	an	elliptical	distribution:

! ∼ [ Σ#/$]
where	Σ ≻ 0 is	fixed	(the	shape	matrix),	[ is	a	scalar	r.v.,	and	] ∼ ^="#.

Tyler’s	M-estimator	for	the	shape	matrix:

_Σ = argmin
?≻A, C* ? D=

a

Y
b

<D#

&
log !<

(Σ"#!< + log det Σ

Is	g-convex for	PD	matrices	(with	affine-invariant	metric).
→ new	algorithms/analysis	+	analysis	for	Tyler’s	iterative	procedure
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Application:	robust	covariance	estimation
IID	samples	!< ∈ ℝ=, W = 1,… , Y,	coming	from	an	elliptical	distribution:

! ∼ [ Σ#/$]
where	Σ ≻ 0 is	fixed	(the	shape	matrix),	[ is	a	scalar	r.v.,	and	] ∼ ^="#.

Tyler’s	M-estimator	for	the	shape	matrix:

_Σ = argmin
?≻A, C* ? D=

a

Y
b

<D#

&
log !<

(Σ"#!< + log det Σ

Is	a	specific	instance	of	the	operator	scaling	problem.

Sources:	Weisel	+	Zhang,	Franks	+	Moitra


