Curvature and Complexity:
 Better lower bounds for geodesically convex optimization

COLT 2023

Chris Criscitiello
Nicolas Boumal
OPTIM, Chair of Continuous Optimization
Institute of Mathematics, EPFL
EPFL

Setting: g-convex optimization

$\min _{x \in \mathcal{M}} f(x)$
(P)
\mathcal{M} is a Riemannian manifold

Setting: g-convex optimization

$\min _{x \in \mathcal{M}} f(x)$

(P)
\mathcal{M} is a Riemannian manifold

Setting: g-convex optimization

$$
\min _{x \in \mathcal{M}} f(x)
$$

(P)
\mathcal{M} is a Riemannian manifold
f is geodesically convex (g-convex)
Def: For every geodesic γ, the 1D
function $t \mapsto f(\gamma(t))$ is convex.

Setting: g-convex optimization

$$
\min _{x \in \mathcal{M}} f(x)
$$

(P)
\mathcal{M} is a Riemannian manifold
f is geodesically convex (g-convex)
Def: For every geodesic γ, the 1D function $t \mapsto f(\gamma(t))$ is convex.

Question: complexity of (P) \& dependence on curvature of \mathcal{M} ?

Setting: g-convex optimization

$$
\begin{equation*}
\min _{x \in \mathcal{M}} f(x) \tag{P}
\end{equation*}
$$

\mathcal{M} is a Riemannian manifold
f is geodesically convex (g-convex)
Def: For every geodesic γ, the 1D function $t \mapsto f(\gamma(t))$ is convex.

Question: complexity of $\mathbf{(P)}$ \& dependence on curvature of \mathcal{M} ?

Here, interested in \mathcal{M} with curvature ≤ 0

Setting: g-convex optimization

Setting: g-convex optimization

$$
\begin{equation*}
\min _{x \in \mathcal{M}} f(x) \tag{P}
\end{equation*}
$$

\mathcal{M} is a Riemannian manifold
f is geodesically convex (g-convex)
Def: For every geodesic γ, the 1D function $t \mapsto f(\gamma(t))$ is convex.

Question: complexity of $\mathbf{(P)}$ \& dependence on curvature of \mathcal{M} ?

Here, interested in \mathcal{M} with curvature ≤ 0

Setting: g-convex optimization

$$
\begin{equation*}
\min _{x \in \mathcal{M}} f(x) \tag{P}
\end{equation*}
$$

\mathcal{M} is a Riemannian manifold
f is geodesically convex (g-convex)
Def: For every geodesic γ, the 1D function $t \mapsto f(\gamma(t))$ is convex.

Question: complexity of $\mathbf{(P)}$ \& dependence on curvature of \mathcal{M} ?

Here, interested in \mathcal{M} with curvature ≤ 0
Assume \mathcal{M} has constant curvature (simplifying assumption)

Setting: g-convex optimization

$$
\left.\min _{x \in \mathcal{M}} f(x) \quad \mathbf{P}\right) \quad \mathcal{M} \text { is a Riemannian manifold }
$$

f is geodesically convex (g-convex)
Def: For every geodesic γ, the 1D function $t \mapsto f(\gamma(t))$ is convex.

Question: complexity of (P) \& dependence on curvature of \mathcal{M} ?

Throughout $\mathcal{N}=\mathbb{H}^{d}$ is a hyperbolic space of curvature $K=-1$ (simplifying assumption)

Curvature

$$
K=0
$$

$$
K<0
$$

Constant curvature:

Euclidean space \mathbb{R}^{d}
Hyperbolic space \mathbb{H}^{d}
($K=-1$)

Curvature

$$
K=0
$$

$$
K<0
$$

Constant
curvature:
Euclidean space \mathbb{R}^{d}
Hyperbolic space \mathbb{H}^{d} ($K=-1$)

Volume of ball of radius r:

$$
\mathrm{Vol} \sim r^{d}=e^{d \log (r)}
$$

$$
\mathrm{Vol} \sim e^{d r}
$$

Curvature

$$
K=0
$$

$$
K<0
$$

Constant curvature:

Euclidean space \mathbb{R}^{d}
Hyperbolic space \mathbb{H}^{d} ($K=-1$)

Volume of ball of radius r:

Pythagorean thm:

$$
\mathrm{Vol} \sim r^{d}=e^{d \log (r)}
$$

$$
\mathrm{Vol} \sim e^{d r}
$$

Curvature

$$
K=0
$$

Euclidean space \mathbb{R}^{d}
Hyperbolic space \mathbb{H}^{d}

$$
(K=-1)
$$

Volume of ball of radius r:

Pythagorean thm:

$$
\mathrm{Vol} \sim r^{d}=e^{d \log (r)} \quad \text { Vol } \sim e^{d r}
$$

$$
s^{2} \approx\left(1-\frac{\epsilon^{2}}{\zeta}\right) r^{2}
$$

Curvature

$$
K=0
$$

$$
K<0
$$

Constant curvature:

Euclidean space \mathbb{R}^{d}
Hyperbolic space \mathbb{H}^{d}

$$
(K=-1)
$$

Volume of ball of radius r:

$$
\mathrm{Vol} \sim r^{d}=e^{d \log (r)} \quad \text { Vol } \sim e^{d r}
$$

Pythagorean thm:

$$
\begin{gathered}
s^{2}=\left(1-\epsilon^{2}\right) r^{2} \quad s^{2} \approx\left(1-\frac{\epsilon^{2}}{\zeta}\right) r^{2} \\
\zeta=\frac{r \sqrt{|K|}}{\tanh (r \sqrt{|K|})} \sim 1+r \sqrt{|K|}
\end{gathered}
$$

Complexity: the computational problem

f attains a global minimizer x^{*} in a known radius- r geodesic ball $B\left(x_{\text {ref }}, r\right)$

Complexity: the computational problem

f attains a global minimizer x^{*} in a known radius- r geodesic ball $B\left(x_{\text {ref }}, r\right)$
f is globally g-convex and in one of four function classes:

Complexity: the computational problem

f attains a global minimizer x^{*} in a known radius- r geodesic ball $B\left(x_{\text {ref }}, r\right)$
f is globally g-convex and in one of four function classes:

- (P1) Lipschitz \& Low-dimensional (d fixed)
- (P2) Lipschitz $|f(x)-f(y)| \leq M \operatorname{dist}(x, y)$
- (P3) Smooth $\left|\nabla f(x)-P_{y \rightarrow x} \nabla f(y)\right| \leq L \operatorname{dist}(x, y)$
- (P4) Smooth \& strongly g-convex

Complexity: the computational problem

f attains a global minimizer x^{*} in a known radius- r geodesic ball $B\left(x_{\text {ref }}, r\right)$
f is globally g-convex and in one of four function classes:

- (P1) Lipschitz \& Low-dimensional (d fixed)
- (P2) Lipschitz $|f(x)-f(y)| \leq M \operatorname{dist}(x, y)$
- (P3) Smooth $\left|\nabla f(x)-P_{y \rightarrow x} \nabla f(y)\right| \leq L \operatorname{dist}(x, y)$
- (P4) Smooth \& strongly g-convex

Task: find an ϵ-optimal point x, e.g., $f(x)-f\left(x^{*}\right) \leq \epsilon \cdot M r$
First order black-box model

Complexity: the computational problem

f attains a global minimizer x^{*} in a known radius- r geodesic ball $B\left(x_{\text {ref }}, r\right)$
f is globally g-convex and in one of four function classes:

- (P1) Lipschitz \& Low-dimensional (d fixed)
- (P2) Lipschitz $|f(x)-f(y)| \leq M \operatorname{dist}(x, y)$
- (P3) Smooth $\left|\nabla f(x)-P_{y \rightarrow x} \nabla f(y)\right| \leq L \operatorname{dist}(x, y)$
- (P4) Smooth \& strongly g-convex

Task: find an ϵ-optimal point x, e.g., $f(x)-f\left(x^{*}\right) \leq \epsilon \cdot M r$
First order black-box model
Worst-case complexity for (P2) \& (P3): can depend on both ϵ and $\zeta \sim 1+r \sqrt{|K|}$

Main results

$$
\zeta \sim 1+r \sqrt{|K|}
$$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim		$O\left(\zeta d^{2}\right)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$O\left(\frac{\zeta}{\epsilon^{2}}\right)$	Subgradient descent (Zhang \& Sra'16)	
(P3) Smooth	$\tilde{O}(\sqrt{\zeta / \epsilon})$	RNAG-C (Kim \& Yang'22 / Martinez-Rubio et al.'22)	
(P4) Smooth, strongly g-convex	$\tilde{O}(\sqrt{\zeta \kappa})$	RNAG-SC (Kim \& Yang'22 / Martinez-Rubio et al.'22)	

Main results

$$
\zeta \sim 1+r \sqrt{|K|}
$$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim		$O\left(\zeta d^{2}\right)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$O\left(\frac{\zeta}{\epsilon^{2}}\right)$	Subgradient descent (Zhang \& Sra'16)	
(P3) Smooth	$\tilde{O}(\sqrt{\zeta / \epsilon})$	RNAG-C (Kim \& Yang'22 / Martinez-Rubio et al.'22)	
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta)$	$\tilde{O}(\sqrt{\zeta \kappa})$	RNAG-SC (Kim \& Yang'22 / Martinez-Rubio et al.'22)

(Hamilton \& Moitra'21 /
C \& Boumal'22)

Main results

$$
\zeta \sim 1+r \sqrt{|K|}
$$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta)$	$O\left(\zeta d^{2}\right)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}(\zeta)$	$O\left(\frac{\zeta}{\epsilon^{2}}\right)$	Subgradient descent (Zhang \& Sra'16)
(P3) Smooth	$\widetilde{\Omega}(\zeta)$	$\tilde{O}(\sqrt{\zeta / \epsilon})$	RNAG-C (Kim \& Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta)$	$\widetilde{O}(\sqrt{\zeta \kappa})$	RNAG-SC (Kim \& Yang'22 / Martinez-Rubio et al.'22)

(Hamilton \& Moitra'21 /
C \& Boumal'22)

Main results

$$
\zeta \sim 1+r \sqrt{|K|}
$$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta)$	$O\left(\zeta d^{2}\right)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}(\zeta)$	$O\left(\frac{\zeta}{\epsilon^{2}}\right)$	Subgradient descent (Zhang \& Sra'16)
(P3) Smooth	$\widetilde{\Omega}(\zeta)$	$\tilde{O}(\sqrt{\zeta / \epsilon})$	RNAG-C (Kim \& Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta)$	$\widetilde{O}(\sqrt{\zeta \kappa})$	RNAG-SC (Kim \& Yang'22 / Martinez-Rubio et al.'22)

(Hamilton \& Moitra'21 /
C \& Boumal'22)

Curvature dependence in all upper bounds is unavoidable!

Main results

$$
\zeta \sim 1+r \sqrt{|K|}
$$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta)$	$O\left(\zeta d^{2}\right)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}(\zeta)$	$O\left(\frac{\zeta}{\epsilon^{2}}\right)$	Subgradient descent (Zhang \& Sra'16)
(P3) Smooth	$\widetilde{\Omega}(\zeta)$	$\tilde{O}(\sqrt{\zeta / \epsilon})$	RNAG-C (Kim \& Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta)$	$\widetilde{O}(\sqrt{\zeta \kappa})$	RNAG-SC (Kim \& Yang'22 / Martinez-Rubio et al.'22)

(Hamilton \& Moitra'21 /
C \& Boumal'22)
Slight modification of hard function in C \& Boumal'22
Volume of ball of radius r : Vol $\sim e^{d r}$

Main results

$$
\zeta \sim 1+r \sqrt{|K|}
$$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta+d)$	$O\left(\zeta d^{2}\right)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}\left(\zeta+\frac{1}{\zeta^{2} \epsilon^{2}}\right)$	$O\left(\frac{\zeta}{\epsilon^{2}}\right)$	Subgradient descent (Zhang \& Sra'16)
(P3) Smooth	$\widetilde{\Omega}\left(\zeta+\frac{1}{\zeta \sqrt{\epsilon}}\right)$	$\tilde{O}(\sqrt{\zeta / \epsilon})$	RNAG-C (Kim \& Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta+\sqrt{\kappa})$	$\tilde{O}(\sqrt{\zeta \kappa})$	RNAG-SC (Kim \& Yang'22 / Martinez-Rubio et al.'22)

Main results

$$
\zeta \sim 1+r \sqrt{|K|}
$$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta+d)$	$O\left(\zeta d^{2}\right)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}\left(\zeta+\frac{1}{\zeta^{2} \epsilon^{2}}\right)$	$O\left(\frac{\zeta}{\epsilon^{2}}\right)$	Subgradient descent (Zhang \& Sra'16)
(P3) Smooth	$\widetilde{\Omega}\left(\zeta+\frac{1}{\zeta \sqrt{\epsilon}}\right)$	$\tilde{O}(\sqrt{\zeta / \epsilon})$	RNAG-C (Kim \& Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta+\sqrt{\kappa})$	RNAG-SC (Kim \& Yang'22 $/$ Martinez-Rubio et al.'22)	

Main results

$$
\zeta \sim 1+r \sqrt{|K|}
$$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta+d)$	$O\left(\zeta d^{2}\right)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}\left(\zeta+\frac{1}{\zeta^{2} \epsilon^{2}}\right)$	$O\left(\frac{\zeta}{\epsilon^{2}}\right)$	Subgradient descent (Zhang \& Sra'16)
(P3) Smooth	$\widetilde{\Omega}\left(\zeta+\frac{1}{\zeta \sqrt{\epsilon}}\right)$	$\tilde{O}(\sqrt{\zeta / \epsilon})$	RNAG-C (Kim \& Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta+\sqrt{\kappa})$	$\tilde{O}(\sqrt{\zeta \kappa})$	RNAG-SC (Kim \& Yang'22 / Martinez-Rubio et al.'22)

\Rightarrow| Cutting-planes
 game | $\widetilde{\Omega}(\zeta d)$ | $O\left(\zeta d^{2}\right)$ | Centerpoint method
 (Rusciano'19) |
| :--- | :--- | :--- | :--- |

$\Rightarrow \Omega\left(\frac{\zeta}{\epsilon^{2}}\right)$ lower bound for subgradient descent (with Polyak step size)

Main results

$$
\zeta \sim 1+r \sqrt{|K|}
$$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lodim	$\widetilde{\Omega}(\zeta+d)$	$O\left(\zeta d^{2}\right.$	Centerpoint method (Rusciano'19)
(P2) Lipschitz			
(P3) St			
(P4) St strong			
Cuttins game			

$\Rightarrow \Omega\left(\frac{\zeta}{\epsilon^{2}}\right)$ lower bound for subgradient descent (with Polyak step size)

Main results

$$
\zeta \sim 1+r \sqrt{|K|}
$$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta+d)$	$O\left(\zeta d^{2}\right)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}\left(\zeta+\frac{1}{\zeta^{2} \epsilon^{2}}\right)$	$O\left(\frac{\zeta}{\epsilon^{2}}\right)$	Subgradient descent (Zhang \& Sra'16)
(P3) Smooth	$\widetilde{\Omega}\left(\zeta+\frac{1}{\zeta \sqrt{\epsilon}}\right)$	$\tilde{O}(\sqrt{\zeta / \epsilon})$	RNAG-C (Kim \& Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta+\sqrt{\kappa})$	$\widetilde{O}(\sqrt{\zeta \kappa})$	RNAG-SC (Kim \& Yang'22 / Martinez-Rubio et al.'22)

\Rightarrow| Cutting-planes
 game | $\widetilde{\Omega}(\zeta d)$ | $O\left(\zeta d^{2}\right)$ | Centerpoint method
 (Rusciano'19) |
| :--- | :--- | :--- | :--- |

$\Rightarrow \Omega\left(\frac{\zeta}{\epsilon^{2}}\right)$ lower bound for subgradient descent (with Polyak step size)

Lipschitz lower bound (P2)

In Euclidean space: $f(x)=\max _{i}\left\{F_{i}+\left\langle g_{i}, x-y_{i}\right\rangle\right\}$

Lipschitz lower bound (P2)

In Euclidean space: $f(x)=\max _{i}\left\{F_{i}+\left\langle g_{i}, x-y_{i}\right\rangle\right\}$

Fundamental difficulty: No good notion of linear functions on manifolds.

Lipschitz lower bound (P2)

In Euclidean space: $f(x)=\max _{i}\left\{F_{i}+\left\langle g_{i}, x-y_{i}\right\rangle\right\}$

Fundamental difficulty: No good notion of linear functions on manifolds.

Hyperbolic halfspaces: $H_{i}=\left\{x \in \mathcal{M}:\left\langle g_{i}, \log _{y_{i}}(x)\right\rangle \leq 0\right\}$

Lipschitz lower bound (P2)

In Euclidean space: $f(x)=\max _{i}\left\{F_{i}+\left\langle g_{i}, x-y_{i}\right\rangle\right\}$

Fundamental difficulty: No good notion of linear functions on manifolds.

Hyperbolic halfspaces: $H_{i}=\left\{x \in \mathcal{M}:\left\langle g_{i}, \log _{y_{i}}(x)\right\rangle \leq 0\right\}$

Idea: use max of distance to halfspaces: $f(x)=\max _{i}\left\{F_{i}+\operatorname{dist}\left(x, H_{i}\right)\right\}$

Lipschitz lower bound (P2)

In Euclidean space: $f(x)=\max _{i}\left\{F_{i}+\left\langle g_{i}, x-y_{i}\right\rangle\right\}$

Fundamental difficulty: No good notion of linear functions on manifolds.

Hyperbolic halfspaces: $H_{i}=\left\{x \in \mathcal{M}:\left\langle g_{i}, \log _{y_{i}}(x)\right\rangle \leq 0\right\}$

Idea: use max of distance to halfspaces: $f(x)=\max _{i}\left\{F_{i}+\operatorname{dist}\left(x, H_{i}\right)\right\}$

Choosing halfspaces in right way yields lower bound $\widetilde{\Omega}\left(\frac{1}{\zeta^{2} \epsilon^{2}}\right)$.

Smooth lower bound (P3)

Worst function in world: $f(x)=x_{(1)}^{2}-2 x_{(1)}+\sum_{i}\left(x_{(i)}-x_{(i+1)}\right)^{2}+x_{(k)}^{2}$

Smooth lower bound (P3)

Worst function in monld. $f(n)=x_{(1)}-\angle x_{(1)} \top Z i\left(x_{(l)} \quad x_{(l T 1)}\right)^{2}+x_{(n)}^{2}$

Smooth lower bound (P3)

Worst function in world. $f(n)-x_{(1)}^{2}-Z x_{(1)}+Z_{i}\left(n(l) \quad x_{(t+1)}\right)^{2}+x_{(n)}^{2}$

Smooth the Lipschitz lower bound with Moreau envelope (Guzman and Nemirovski'15):

$$
f_{\lambda}(x)=\inf _{y \in \mathcal{M}}\left\{f(y)+\frac{1}{2 \lambda} \operatorname{dist}^{2}(x, y)\right\}
$$

Smooth lower bound (P3)

Worst function in wonld. $f(n)-x_{(1)}^{2}-\angle x_{(1)}-Z_{i}\left(n_{(l)} \quad x_{(t+1)}\right)^{2}+x_{(n)}^{2}$

Smooth the Lipschitz lower bound with Moreau envelope (Guzman and Nemirovski'15):

$$
f_{\lambda}(x)=\inf _{y \in \mathcal{M}}\left\{f(y)+\frac{1}{2 \lambda} \operatorname{dist}^{2}(x, y)\right\}
$$

Surprising because no good notion of Fenchel dual on manifolds.

Yields lower bound $\widetilde{\Omega}\left(\frac{1}{\zeta \sqrt{\epsilon}}\right)$.

Tight lower bound for subgradient descent (P2)

New worst function in the world (not an extension of a Euclidean proof):

$$
f(x)=\operatorname{dist}\left(x, x^{*}\right)+
$$

Tight lower bound for subgradient descent (P2)

New worst function in the world (not an extension of a Euclidean proof):

$$
f(x)=\operatorname{dist}\left(x, x^{*}\right)+\max _{i}\left\{\frac{1}{4 \epsilon} \operatorname{dist}\left(x, L_{i}\right)\right\}
$$

L_{i} are cleverly chosen hyperbolic halfspaces.
Yields $\Omega\left(\frac{\zeta}{\epsilon^{2}}\right)$ lower bound for subgradient descent (with Polyak step size).

Tight lower bound for subgradient descent (P2)

New worst function in the world (not an extension of a Euclidean proof):

$$
f(x)=\operatorname{dist}\left(x, x^{*}\right)+\max _{i}\left\{\frac{1}{4 \epsilon} \operatorname{dist}\left(x, L_{i}\right)\right\}
$$

L_{i} are cleverly chosen hyperbolic halfspaces.
Yields $\Omega\left(\frac{\zeta}{\epsilon^{2}}\right)$ lower bound for subgradient descent (with Polyak step size).

$$
s^{2}=\left(1-\epsilon^{2}\right) r^{2} \quad s^{2} \approx\left(1-\frac{\epsilon^{2}}{\zeta}\right) r^{2}
$$

$$
\epsilon=\cos (\theta) \text { is small }
$$

Appendix

Ball of radius r

Sec 3

Slight modification of hard function in C \& Boumal'21
Volume of ball of radius r : Vol $\sim e^{d r}$

Lipschitz lower bound (P2) - Sec 4

In Euclidean space: $f(x)=\max _{i=1, \ldots, d}\left\{\left\langle s_{i} e_{i}, x\right\rangle\right\}, s_{i} \in\{-1,+1\}$
Fundamental difficulty: No good notion of linear functions on manifolds.

- Every convex function equals a sup of affine functions, which are themselves convex.
- Every g-convex function equals a sup of $x \mapsto F_{i}+\left\langle g_{i}, \log _{y_{i}}(x)\right\rangle$, but these are not g-convex.

Totally geodesic submanifolds: $S_{i}=\left\{x \in \mathcal{M}=\mathbb{H}^{d}:\left\langle g_{i}, \log _{y_{i}}(x)\right\rangle=0\right\}$

- Generalization of affine subspace

Idea: use max of distance to totally geodesic submanifolds:

$$
f(x)=\max _{i=1, \ldots, d}\left\{\operatorname{dist}\left(x, S_{i}^{s_{i}}\right)\right\}, s_{i} \in\{-1,+1\}
$$

Choosing halfspaces in right way yields lower bound $\widetilde{\Omega}\left(\frac{1}{\zeta^{2} \epsilon^{2}}\right)$.

Lipschitz lower bound (P2) - Sec 4

Smooth lower bound (P3) - Sec 5

Worst function in wonld. $f(n)-x_{(1)}^{2}-\angle x_{(1)}+Z_{i}\left(n(l) \quad x_{(t+1)}\right)^{2}+x_{(w)}^{2}$

Smooth Lipschitz lower bound with Moreau envelope (Guzman and Nemirovski'15):

$$
f_{\lambda}(x)=\inf _{y \in \mathcal{M}}\left\{f(y)+\frac{1}{2 \lambda} \operatorname{dist}^{2}(x, y)\right\}
$$

Surprising because no good notion of Fenchel dual on manifolds.

Yields lower bound $\widetilde{\Omega}\left(\frac{1}{\zeta \sqrt{\epsilon}}\right)$.

Tight lower bound for subgradient descent (P2) - Sec 6

New worst function in the world (not an extension of a Euclidean proof):

$$
f(x)=\operatorname{dist}\left(x, x^{*}\right)+\max _{i=0, \ldots, d-2}\left\{\frac{1}{4 \epsilon} \operatorname{dist}\left(x, L_{i}\right)\right\}
$$

L_{i} are cleverly chosen hyperbolic halfspaces.
Yields $\Omega\left(\frac{\zeta}{\epsilon^{2}}\right)$ lower bound for subgradient descent (with Polyak step size).

$$
s^{2}=\left(1-\epsilon^{2}\right) r^{2} \quad s^{2} \approx\left(1-\frac{\epsilon^{2}}{\zeta}\right) r^{2}
$$

$$
\epsilon=\cos (\theta) \text { is small }
$$

Tight lower bound for subgradient descent (P2) - Sec 6

Cutting-planes game (proxy for (P1)) - Sec 7

Cutting planes game:

- Initially given $B\left(x_{\text {ref }}, r\right)$ containing x^{*}
- Upon query x_{k}, oracle returns tangent vector g_{k} such that $\left\langle g_{k}, \log _{x_{k}}\left(x^{*}\right)\right\rangle \leq 0$
- Task: Find x_{k} so that $B\left(x^{*}, \epsilon r\right)$ intersects $S_{k}=\{x \in$ $\left.\mathcal{M}:\left\langle g_{k}, \log _{x_{k}}(x)\right\rangle=0\right\}$

Usual lower bounds proof (tessellation of cube) does not generalize (Nesterov'04).

Width-bounded separators (Kisfaludi-Back'20, Fu'11):

- Given a collect of balls and a point x_{k}, there exists a totally geodesic submanifold S_{k} through x_{k} which intersects a small fraction of these balls

Yields $\widetilde{\Omega}(\zeta d)$ lower bound for cutting-plane schemes, e.g., center-of-gravity method.

G-convex interpolation - Sec 8

Interpolation is crucial for building lower bounds (Taylor et al.'16).
A collection of function values and tangent vectors $\left(F_{i}, x_{i}, g_{i}\right)_{i=1}^{N}$ is interpolated by a gconvex function f if $f\left(x_{i}\right)=F_{i}$ and $g_{i} \in \partial f\left(x_{i}\right)$ for all i.

A convex function interpolates $\left(F_{i}, x_{i}, g_{i}\right)_{i=1}^{N}$ if and only if

$$
F_{j} \geq F_{i}+\left\langle g_{i}, x_{j}-x_{i}\right\rangle \text { for all } i, j
$$

For g-convex functions the analogous naïve necessary conditions are not sufficient for interpolation even for just 3 points:

- There exists $\left(F_{i}, x_{i}, g_{i}\right)_{i=1}^{3}$ such that $F_{j} \geq F_{i}+\left\langle g_{i}, \log _{x_{j}}\left(x_{j}\right)\right\rangle$ for all i, j, yet this data cannot be interpolated by a g -convex function.

