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Setting:	g-convex	optimization
min
!∈ℳ

$ % (P) ℳ is	a	Riemannian	manifold

$ is	geodesically convex	(g-convex)
Def:	For	every	geodesic	!,	the	1D	

function	" ↦ $ ! " is	convex.

Question:	complexity	of	(P)	&	dependence	on	curvature	of	ℳ?

For	now,	interested	in	ℳ with	curvature	≤ 0
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$ % (P) ℳ is	a	Riemannian	manifold

$ is	geodesically convex	(g-convex)
Def:	For	every	geodesic	!,	the	1D	

function	" ↦ $ ! " is	convex.

Question:	complexity of	(P)	&	dependence	on	curvature of	ℳ?

Here,	interested	in	ℳ with	curvature	≤ 0

Most	positively	curved	spaces	do	not	carry	
nonconstant	global	g-convex	functions.

Applications	of	g-convexity	usually	have	K ≤ 0:	
• Operator	scaling
• Robust	covariance	estimation
• Matrix	normal	models
• Intrinsic	medians	(e.g.,	for	phylogenetics)
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Setting:	g-convex	optimization
min
!∈ℳ

$ % (P) ℳ is	a	Riemannian	manifold

$ is	geodesically convex	(g-convex)
Def:	For	every	geodesic	!,	the	1D	

function	" ↦ $ ! " is	convex.

Question:	complexity of	(P)	&	dependence	on	curvature of	ℳ?

Throughoutℳ = ℍ% is	a	hyperbolic	space	of	curvature	& = −1
(simplifying	assumption)
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Complexity:	the	computational	problem
$ attains	a	global	minimizer	8∗ in	a	known	radius-> geodesic	ball	?(8"#$, >)

$ is	globally	g-convex	and	in	one	of	four	function	classes:
• (P1)	Lipschitz		&	Low-dimensional	(N fixed)
• (P2)	Lipschitz	 $ 8 − $ Q ≤ S dist 8, Q
• (P3)	Smooth	 ∇$ 8 − W%→'∇$(Q) ≤ X dist 8, Q
• (P4)	Smooth	&	strongly	g-convex

Task:	find	an	&-optimal	point	8

First	order	black-box	model

Worst-case	complexity	for	(P2)	&	(P3):	can	depend	on	both	& and	Z ∼ 1 + > ]
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Main	results
g-convex	setting Lower	bound Upper	bound Algorithm

(P1)	Lipschitz,	lo-
dim
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6

*

8!
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Lipschitz	lower	bound	(P2)
In	Euclidean	space:	* + = max

@
/@ + ⟨2@, + − 4@⟩

Fundamental	difficulty:	No	good	notion	of	linear	functions	on	manifolds.

Hyperbolic	halfspaces:	6@ = + ∈ ℳ: 2@, logA" + ≤ 0

Idea:	use	max	of	distance	to	halfspaces:	* + = max
@
{/@+dist +, 6@ }

Choosing	halfspaces in	right	way	yields	lower	bound	EΩ B

>!?!
.
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Smooth	lower	bound	(P3)
Worst	function	in	world:	" # = # !

" − 2#(!) + ∑% #(%) − #(%&!)
" + # '

"

Smooth	Lipschitz	lower	bound	with	Moreau	envelope	(Guzman	and	Nemirovski’15):

"( # = inf)∈ℳ " , + 1
2. dist

" #, ,

Surprising	because	no	good	notion	of	Fenchel dual.

Yields	lower	bound	3Ω B

> ?
.
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Tight	lower	bound	for	subgradient descent	(P2)
New worst	function	in	the	world	(not an	extension	of	a	Euclidean	proof):

* + = dist +, +∗ +max
@

1
4&
dist +, G@

G@ are	cleverly	chosen	hyperbolic	halfspaces.

Yields	Ω >

?!
	lower	bound	for	subgradient	descent	(with	Polyak	step	size).
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Sec	3
Slight	modification	of	hard	function	in	C	&	Boumal’21

Volume	of	ball	of	radius	!:	Vol ∼ &!"

a*

Ball	of	radius	+,
(exponentially	many	of	these)	

Ball	of	radius	>

a(

a-
a.



Lipschitz	lower	bound	(P2)	– Sec	4
In	Euclidean	space:	' ( = max#$%,…,! ⟨.#&# , (⟩ , .# ∈ {−1,+1}

Fundamental	difficulty:	No	good	notion	of	linear	functions	on	manifolds.

• Every	convex	function	equals	a	sup	of	affine	functions,	which	are	themselves	convex.
• Every	g-convex	function	equals	a	sup	of	$ ↦ &# + ⟨)# , log$! $ ⟩,	but	these	are	not	g-convex.

Totally	geodesic	submanifolds:	7# = ( ∈ ℳ = ℍ!: ;# , log(" ( = 0
• Generalization	of	affine	subspace
Idea:	use	max	of	distance	to	totally	geodesic	submanifolds:	

' ( = max#$%,…,! dist (, 7#
)" , .# ∈ {−1,+1}

Choosing	halfspaces in	right	way	yields	lower	bound	BΩ %
*#+# .



Lipschitz	lower	bound	(P2)	– Sec	4
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Smooth	lower	bound	(P3)	– Sec	5
Worst	function	in	world:	" # = # !

" − 2#(!) + ∑% #(%) − #(%&!)
" + # '

"

Smooth	Lipschitz	lower	bound	with	Moreau	envelope	(Guzman	and	Nemirovski’15):

"( # = inf)∈ℳ " , + 1
2. dist

" #, ,

Surprising	because	no	good	notion	of	Fenchel dual	on	manifolds.

Yields	lower	bound	3Ω B

> ?
.



Tight	lower	bound	for	subgradient descent	(P2)	
– Sec	6
New worst	function	in	the	world	(not an	extension	of	a	Euclidean	proof):

* + = dist +, +∗ + max
@DE,…,!H)

1
4&
dist +, G@

G@ are	cleverly	chosen	hyperbolic	halfspaces.

Yields	Ω >

?!
	lower	bound	for	subgradient	descent	(with	Polyak	step	size).

& &' '

(
(

& = cos + 	is	small

") ≈ 1 −
&)

' ()") = 1 − &) ()



Tight	lower	bound	for	subgradient descent	
(P2)	– Sec	6
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Cutting-planes	game	(proxy	for	(P1))	– Sec	7
Cutting	planes	game:
• Initially	given	, -"#$, / containing	-∗
• Upon	query	-& ,	oracle	returns	tangent	vector	0& such	that	0& , log'! -∗ ≤ 0
• Task:	Find	-& so	that	, -∗, 6/ intersects	7& = 9

:
- ∈

ℳ: 0& , log'! - = 0

Usual	lower	bounds	proof	(tessellation	of	cube)	does	not	
generalize	(Nesterov’04).

Width-bounded	separators	(Kisfaludi-Back'20,	Fu'11):	
• Given	a	collect	of	balls	and	a	point	-& ,	there	exists	a	totally	geodesic	submanifold	7& through	-& which	intersects	a	small	
fraction	of	these	balls

Yields	<Ω >? lower	bound	for	cutting-plane	schemes,	e.g.,	center-
of-gravity	method.
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D (/01, !
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G-convex	interpolation	– Sec	8
Interpolation	is	crucial	for	building	lower	bounds	(Taylor	et	al.’16).

A	collection	of	function	values	and	tangent	vectors	 F# , (# , ;# #$%
6 is	interpolated	by	a	g-

convex	function	' if	' (# = F# and	;# ∈ G' (# for	all	H.

A	convex function	interpolates	 F# , (# , ;# #$%
6 if	and	only	if

F7 ≥ F# + ;# , (7 − (# for all H, L

For	g-convex functions	the	analogous	naïve	necessary	conditions	are	not sufficient	for	
interpolation	even for	just	3	points:

• There	exists	 I$ , J$ , K$ $%&
' such	that	I( ≥ I$ + K$ , log)" J( for all R, S,	yet	this	data	cannot	be	interpolated	

by	a	g-convex	function.


