Curvature and Complexity: Better lower bounds for geodesically convex optimization

COLT 2023

Chris Criscitiello Nicolas Boumal OPTIM, Chair of Continuous Optimization Institute of Mathematics, EPFL

Setting: g-convex optimization

(P)

 $\min_{x\in\mathcal{M}}f(x)$

 ${\mathcal M}$ is a Riemannian manifold

Setting: g-convex optimization $\min_{x\in\mathcal{M}}f(x)$ **(P)**

f is *geodesically* convex (g-convex) Def: For every geodesic γ , the 1D function $t \mapsto f(\gamma(t))$ is convex.

 $\mathcal M$ is a Riemannian manifold

Setting: g-convex optimization $\min_{x\in\mathcal{M}}f(x)$ **(P)**

f is *geodesically* convex (g-convex) Def: For every geodesic γ , the 1D function $t \mapsto f(\gamma(t))$ is convex.

 \mathcal{M} is a Riemannian manifold

Question: complexity of **(P)** & dependence on curvature of \mathcal{M} ?

f is geodesically convex (g-convex)Def: For every geodesic γ , the 1D function $t \mapsto f(\gamma(t))$ is convex.

Question: complexity of **(P)** & dependence on curvature of \mathcal{M} ?

Here, interested in \mathcal{M} with curvature ≤ 0

Setting: g-convex optimization

 $\min_{x \in \mathcal{M}} f(x) \quad (\mathbf{P}) \qquad \qquad \mathcal{M} \text{ is a Riemannian manifold}$

• Intrinsic medians (e.g., for phylogenetics)

Here, interested in \mathcal{M} with curvature ≤ 0

f is geodesically convex (g-convex)Def: For every geodesic γ , the 1D function $t \mapsto f(\gamma(t))$ is convex.

Question: complexity of **(P)** & dependence on curvature of \mathcal{M} ?

Here, interested in \mathcal{M} with curvature ≤ 0

f is geodesically convex (g-convex)Def: For every geodesic γ , the 1D function $t \mapsto f(\gamma(t))$ is convex.

Question: complexity of **(P)** & dependence on curvature of \mathcal{M} ?

Here, interested in \mathcal{M} with curvature ≤ 0 Assume \mathcal{M} has constant curvature (simplifying assumption)

f is geodesically convex (g-convex)Def: For every geodesic γ , the 1D function $t \mapsto f(\gamma(t))$ is convex.

Question: complexity of **(P)** & dependence on curvature of \mathcal{M} ?

Throughout $\mathcal{M} = \mathbb{H}^d$ is a hyperbolic space of curvature K = -1 (simplifying assumption)

Curvature

$$K = 0$$

K < 0

Constant curvature:

Euclidean space \mathbb{R}^d

Hyperbolic space \mathbb{H}^d (K = -1)

Curvature

$$K = 0 \qquad \qquad K < 0$$

Constant curvature:

Euclidean space \mathbb{R}^d

Hyperbolic space
$$\mathbb{H}^d$$

($K = -1$)

Volume of ball of radius r:

 $Vol \sim r^d = e^{d \log(r)} \qquad Vol \sim e^{dr}$

Curvature

Constant

curvature:

 $\epsilon = \cos(\theta)$ is small

f attains a global minimizer x^* in a known radius-*r* geodesic ball $B(x_{ref}, r)$

f attains a global minimizer x^* in a known radius-*r* geodesic ball $B(x_{ref}, r)$

f is globally g-convex and in one of four function classes:

f attains a global minimizer x^* in a known radius-*r* geodesic ball $B(x_{ref}, r)$

f is globally g-convex and in one of four function classes:

- (P1) Lipschitz & Low-dimensional (d fixed)
- (P2) Lipschitz $|f(x) f(y)| \le M \operatorname{dist}(x, y)$
- (P3) Smooth $|\nabla f(x) P_{y \to x} \nabla f(y)| \le L \operatorname{dist}(x, y)$
- (P4) Smooth & strongly g-convex

f attains a global minimizer x^* in a known radius-r geodesic ball $B(x_{ref}, r)$

f is globally g-convex and in one of four function classes:

- (P1) Lipschitz & Low-dimensional (d fixed)
- (P2) Lipschitz $|f(x) f(y)| \le M \operatorname{dist}(x, y)$
- (P3) Smooth $|\nabla f(x) P_{y \to x} \nabla f(y)| \le L \operatorname{dist}(x, y)$
- (P4) Smooth & strongly g-convex

Task: find an ϵ -optimal point x, e.g., $f(x) - f(x^*) \le \epsilon \cdot Mr$

First order black-box model

f attains a global minimizer x^* in a known radius-r geodesic ball $B(x_{ref}, r)$

f is globally g-convex and in one of four function classes:

- (P1) Lipschitz & Low-dimensional (d fixed)
- (P2) Lipschitz $|f(x) f(y)| \le M \operatorname{dist}(x, y)$
- (P3) Smooth $|\nabla f(x) P_{y \to x} \nabla f(y)| \le L \operatorname{dist}(x, y)$
- (P4) Smooth & strongly g-convex

Task: find an ϵ -optimal point x, e.g., $f(x) - f(x^*) \le \epsilon \cdot Mr$

First order black-box model

Worst-case complexity for (P2) & (P3): can depend on both ϵ and $\zeta \sim 1 + r\sqrt{|K|}$

 $\zeta \sim 1 + r\sqrt{|K|}$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim		$O(\zeta d^2)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz		$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
(P3) Smooth		$\tilde{O}\left(\sqrt{\zeta/\epsilon}\right)$	RNAG-C (Kim & Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex		$ ilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez-Rubio et al.'22)

 $\zeta \sim 1 + r\sqrt{|K|}$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim		$O(\zeta d^2)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz		$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
(P3) Smooth		$\tilde{O}\left(\sqrt{\zeta/\epsilon}\right)$	RNAG-C (Kim & Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta)$	$ ilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez-Rubio et al.'22)

(Hamilton & Moitra'21 /

C & Boumal'22)

 $\zeta \sim 1 + r\sqrt{|K|}$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta)$	$O(\zeta d^2)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}(\zeta)$	$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
(P3) Smooth	$\widetilde{\Omega}(\zeta)$	$\tilde{O}\left(\sqrt{\zeta/\epsilon}\right)$	RNAG-C (Kim & Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta)$	$ ilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez-Rubio et al.'22)

(Hamilton & Moitra'21 /

C & Boumal'22)

 $\zeta \sim 1 + r\sqrt{|K|}$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta)$	$O(\zeta d^2)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}(\zeta)$	$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
(P3) Smooth	$\widetilde{\Omega}(\zeta)$	$\tilde{O}\left(\sqrt{\zeta/\epsilon}\right)$	RNAG-C (Kim & Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta)$	$\tilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez-Rubio et al.'22)

(Hamilton & Moitra'21 /

C & Boumal'22)

Curvature dependence in all upper bounds is unavoidable!

 $\zeta \sim 1 + r\sqrt{|K|}$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta)$	$O(\zeta d^2)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}(\zeta)$	$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
(P3) Smooth	$\widetilde{\Omega}(\zeta)$	$\tilde{O}\left(\sqrt{\zeta/\epsilon}\right)$	RNAG-C (Kim & Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta)$	$ ilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez-Rubio et al.'22)

(Hamilton & Moitra'21 /

C & Boumal'22)

Slight modification of hard function in C & Boumal'22

Volume of ball of radius r: Vol ~ e^{dr}

 $\zeta \sim 1 + r\sqrt{|K|}$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta + d)$	$O(\zeta d^2)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}\left(\zeta + \frac{1}{\zeta^2 \epsilon^2}\right)$	$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
(P3) Smooth	$\widetilde{\Omega}\left(\zeta + \frac{1}{\zeta\sqrt{\epsilon}}\right)$	$\tilde{O}\left(\sqrt{\zeta}/\epsilon\right)$	RNAG-C (Kim & Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta + \sqrt{\kappa})$	$\tilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez-Rubio et al.'22)

 $\zeta \sim 1 + r\sqrt{|K|}$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta+d)$	$O(\zeta d^2)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}\left(\zeta + \frac{1}{\zeta^2 \epsilon^2}\right)$	$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
(P3) Smooth	$\widetilde{\Omega}\left(\zeta + \frac{1}{\zeta\sqrt{\epsilon}}\right)$	$\tilde{O}\left(\sqrt{\zeta/\epsilon}\right)$	RNAG-C (Kim & Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta + \sqrt{\kappa})$	$\tilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez-Rubio et al.'22)
	Do not	match!	Note: $\kappa \ge \zeta$ and $\frac{1}{\epsilon} \ge \zeta$
	Additive	Multiplicative	

 $\zeta \sim 1 + r\sqrt{|K|}$

	g-convex setting	Lower bound	Upper bound	Algorithm
	(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta+d)$	$O(\zeta d^2)$	Centerpoint method (Rusciano'19)
	(P2) Lipschitz	$\widetilde{\Omega}\left(\zeta+\frac{1}{\zeta^2\epsilon^2}\right)$	$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
	(P3) Smooth	$\widetilde{\Omega}\left(\zeta+\frac{1}{\zeta\sqrt{\epsilon}}\right)$	$\tilde{O}\left(\sqrt{\zeta/\epsilon}\right)$	RNAG-C (Kim & Yang'22 / Martinez-Rubio et al.'22)
	(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta + \sqrt{\kappa})$	$ ilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez-Rubio et al.'22)
+	Cutting-planes game	$\widetilde{\Omega}(\zeta d)$	$O(\zeta d^2)$	Centerpoint method (Rusciano'19)

→ $\Omega\left(\frac{\zeta}{\epsilon^2}\right)$ lower bound for subgradient descent (with Polyak step size)

 $\zeta \sim 1 + r\sqrt{|K|}$

	g-convex setting	Lower bound	Upper bound	Algorithm
	(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta + d)$	$O(\zeta d^2)$	Centerpoint method (Rusciano'19)
	(P2) Lipschitz	$\widetilde{\alpha}(z, 1)$	$o(\zeta)$	Subgradient descent
	(P3) Sr	$s^2 = (1 - \epsilon^2)r^2$	$s^2 \approx \left(1 - \frac{\epsilon^2}{\zeta}\right) r^2$.6) 1 & Yang'22 / 10 et al.'22)
	(P4) Sr strong	9 r		m & Yang'22 bio et al.'22)
-	Cutting game	S	$\epsilon = \cos(\theta)$ is small	method

 $\Rightarrow \Omega\left(\frac{\zeta}{\epsilon^2}\right) \text{ lower bound for subgradient descent (with Polyak step size)}$

 $\zeta \sim 1 + r\sqrt{|K|}$

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta + d)$	$O(\zeta d^2)$	Centerpoint method (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}\left(\zeta + \frac{1}{\zeta^2 \epsilon^2}\right)$	$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
(P3) Smooth	$\widetilde{\Omega}\left(\zeta+\frac{1}{\zeta\sqrt{\epsilon}}\right)$	$\tilde{O}\left(\sqrt{\zeta/\epsilon}\right)$	RNAG-C (Kim & Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta + \sqrt{\kappa})$	$\tilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez-Rubio et al.'22)
Cutting-planes game	$\widetilde{\Omega}(\zeta d)$	$O(\zeta d^2)$	Centerpoint method (Rusciano'19)

 $\left(\frac{\zeta}{\epsilon^2}\right)$ lower bound for subgradient descent (with Polyak step size)

In Euclidean space: $f(x) = \max_{i} \{F_i + \langle g_i, x - y_i \rangle\}$

In Euclidean space: $f(x) = \max_{i} \{F_i + \langle g_i, x - y_i \rangle\}$

Fundamental difficulty: No good notion of linear functions on manifolds.

In Euclidean space: $f(x) = \max_{i} \{F_i + \langle g_i, x - y_i \rangle\}$

Fundamental difficulty: No good notion of linear functions on manifolds.

Hyperbolic halfspaces: $H_i = \{x \in \mathcal{M}: \langle g_i, \log_{y_i}(x) \rangle \le 0\}$

In Euclidean space: $f(x) = \max_{i} \{F_i + \langle g_i, x - y_i \rangle\}$

Fundamental difficulty: No good notion of linear functions on manifolds.

Hyperbolic halfspaces: $H_i = \{x \in \mathcal{M} : \langle g_i, \log_{y_i}(x) \rangle \le 0\}$

Idea: use max of distance to halfspaces: $f(x) = \max_{i} \{F_i + \text{dist}(x, H_i)\}$

In Euclidean space: $f(x) = \max_{i} \{F_i + \langle g_i, x - y_i \rangle\}$

Fundamental difficulty: No good notion of linear functions on manifolds.

Hyperbolic halfspaces: $H_i = \{x \in \mathcal{M}: \langle g_i, \log_{y_i}(x) \rangle \le 0\}$

Idea: use max of distance to halfspaces: $f(x) = \max_{i} \{F_i + \text{dist}(x, H_i)\}$

Choosing halfspaces in right way yields lower bound $\widetilde{\Omega}\left(\frac{1}{\zeta^2\epsilon^2}\right)$.

Worst function in world: $f(x) = x_{(1)}^2 - 2x_{(1)} + \sum_i (x_{(i)} - x_{(i+1)})^2 + x_{(k)}^2$

Worst function in world: $f(x) = x_{(1)} - 2x_{(1)} + \sum_{i} (x_{(i)} - x_{(i+1)})^2 + x_{(i)}^2$

Worst function in world: $f(x) = x_{(1)} - 2x_{(1)} -$

Smooth the Lipschitz lower bound with Moreau envelope (Guzman and Nemirovski'15):

$$f_{\lambda}(x) = \inf_{y \in \mathcal{M}} \left\{ f(y) + \frac{1}{2\lambda} \operatorname{dist}^{2}(x, y) \right\}$$

Worst function in world: $f(x) = x_{(1)} = 2x_{(1)} + \sum_{i} (x_{(i)} - x_{(i+1)})^2 + x_{(i)}^2$

Smooth the Lipschitz lower bound with Moreau envelope (Guzman and Nemirovski'15):

$$f_{\lambda}(x) = \inf_{y \in \mathcal{M}} \left\{ f(y) + \frac{1}{2\lambda} \operatorname{dist}^{2}(x, y) \right\}$$

Surprising because no good notion of Fenchel dual on manifolds.

Yields lower bound
$$\widetilde{\Omega}\left(\frac{1}{\zeta\sqrt{\epsilon}}\right)$$
.

Tight lower bound for subgradient descent (P2)

New worst function in the world (not an extension of a Euclidean proof):

$$f(x) = \operatorname{dist}(x, x^*) +$$

Tight lower bound for subgradient descent (P2)

New worst function in the world (not an extension of a Euclidean proof):

$$f(x) = \operatorname{dist}(x, x^*) + \max_{i} \left\{ \frac{1}{4\epsilon} \operatorname{dist}(x, L_i) \right\}$$

 L_i are cleverly chosen hyperbolic halfspaces.

Yields $\Omega\left(\frac{\zeta}{\epsilon^2}\right)$ lower bound for subgradient descent (with Polyak step size).

Tight lower bound for subgradient descent (P2)

New worst function in the world (not an extension of a Euclidean proof):

$$f(x) = \operatorname{dist}(x, x^*) + \max_{i} \left\{ \frac{1}{4\epsilon} \operatorname{dist}(x, L_i) \right\}$$

 L_i are cleverly chosen hyperbolic halfspaces.

Yields $\Omega\left(\frac{\zeta}{\epsilon^2}\right)$ lower bound for subgradient descent (with Polyak step size).

Appendix

Lipschitz lower bound (P2) – Sec 4

In Euclidean space: $f(x) = \max_{i=1,\dots,d} \{ \langle s_i e_i, x \rangle \}, s_i \in \{-1, +1\}$

Fundamental difficulty: No good notion of linear functions on manifolds.

- Every convex function equals a sup of affine functions, which are themselves convex.
- Every g-convex function equals a sup of $x \mapsto F_i + \langle g_i, \log_{y_i}(x) \rangle$, but these are not g-convex.

Totally geodesic submanifolds: $S_i = \{x \in \mathcal{M} = \mathbb{H}^d : \langle g_i, \log_{y_i}(x) \rangle = 0\}$

• Generalization of affine subspace

Idea: use max of distance to totally geodesic submanifolds:

$$f(x) = \max_{i=1,...,d} \{ \text{dist}(x, S_i^{s_i}) \}, s_i \in \{-1, +1\}$$

Choosing halfspaces in right way yields lower bound $\widetilde{\Omega}\left(\frac{1}{\zeta^2 \epsilon^2}\right)$.

Lipschitz lower bound (P2) – Sec 4

Smooth lower bound (P3) – Sec 5

Worst function in world: $f(x) = x_{(1)} = 2x_{(1)} + 2i(x_{(1)} - x_{(1+1)})^2 + x_{(1)}^2$

Smooth Lipschitz lower bound with Moreau envelope (Guzman and Nemirovski'15):

$$f_{\lambda}(x) = \inf_{y \in \mathcal{M}} \left\{ f(y) + \frac{1}{2\lambda} \operatorname{dist}^{2}(x, y) \right\}$$

Surprising because no good notion of Fenchel dual on manifolds.

Yields lower bound
$$\widetilde{\Omega}\left(\frac{1}{\zeta\sqrt{\epsilon}}\right)$$
.

Tight lower bound for subgradient descent (P2) – Sec 6

New worst function in the world (not an extension of a Euclidean proof):

$$f(x) = \operatorname{dist}(x, x^*) + \max_{i=0,\dots,d-2} \left\{ \frac{1}{4\epsilon} \operatorname{dist}(x, L_i) \right\}$$

 L_i are cleverly chosen hyperbolic halfspaces.

Yields $\Omega\left(\frac{\zeta}{\epsilon^2}\right)$ lower bound for subgradient descent (with Polyak step size).

Tight lower bound for subgradient descent (P2) – Sec 6

Cutting-planes game (proxy for (P1)) – Sec 7

Cutting planes game:

- Initially given $B(x_{ref}, r)$ containing x^*
- Upon query x_k , oracle returns tangent vector g_k such that $\langle g_k, \log_{x_k}(x^*) \rangle \le 0$
- Task: Find x_k so that $B(x^*, \epsilon r)$ intersects $S_k = \{x \in \mathcal{M}: \langle g_k, \log_{x_k}(x) \rangle = 0\}$

Usual lower bounds proof (tessellation of cube) does not generalize (Nesterov'04).

Width-bounded separators (Kisfaludi-Back'20, Fu'11):

• Given a collect of balls and a point x_k , there exists a totally geodesic submanifold S_k through x_k which intersects a small fraction of these balls

Yields $\widetilde{\Omega}(\zeta d)$ lower bound for cutting-plane schemes, e.g., centerof-gravity method.

G-convex interpolation – Sec 8

Interpolation is crucial for building lower bounds (Taylor et al.'16).

A collection of function values and tangent vectors $(F_i, x_i, g_i)_{i=1}^N$ is interpolated by a gconvex function f if $f(x_i) = F_i$ and $g_i \in \partial f(x_i)$ for all i.

A convex function interpolates $(F_i, x_i, g_i)_{i=1}^N$ if and only if

$$F_j \ge F_i + \langle g_i, x_j - x_i \rangle$$
 for all i, j

For g-convex functions the analogous naïve necessary conditions are *not* sufficient for interpolation even for just 3 points:

• There exists $(F_i, x_i, g_i)_{i=1}^3$ such that $F_j \ge F_i + \langle g_i, \log_{x_j}(x_j) \rangle$ for all i, j, yet this data cannot be interpolated by a g-convex function.