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Question

Is	there	a	fully	accelerated	first-order algorithm	for	
geodesically convex	optimization	with	exact	oracles?

Short	answer:	No.
Slightly	longer	answer:	We	show	there	are	Riemannian	manifolds	and	
regimes	where	gradient	descent	is	optimal	(worst-case	complexity).
Why?	The	volume	of	a	ball	in	negatively	curved	spaces	is	very	large.
Builds	on	work	of	Hamilton	and	Moitra	(2021),	who	show	the	answer	is	no	
when	algorithms	receive	noisy information.

5Hamilton	and	Moitra:	“A	No-Go	Theorem	for	Acceleration	in	the	Hyperbolic	Plane”	(2021)



Geodesically	convex	optimization

min!∈# $ %

Search	space	& is	a	g-convex subset	of	a	Riemannian manifold	ℳ:

For	each	!, # ∈ %,	there	is	a	unique	minimizing	geodesic	& ↦ ((&) contained	
in	%,	connecting	!, #.

Cost $ is +-strongly g-convex:	
& ↦ + ( &

is	,-strongly	convex	for	any	geodesic	( in	%.
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Hadamard	manifolds

Complete,	simply	connected,	with	non-positive	(intrinsic)	curvature.

Euclidean	space:	ℳ = ℝ!

Hyperbolic	space

Positive	definite	matrices:	ℳ = 0 ∈ 1"×": 0 = 0$ and 0 ≻ 0

with	affine-invariant	metric	 8, 9 % = Tr 0&'80&'9 .

Non-example:	Sphere
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Computational	task

Geodesic	ball	! = !($!"#, &) of	radius	& in	Hadamard	space	ℳ.

You	know:

• ) is	*-smooth	in	! and +-strongly	convex	in	ℳ;

• ) has	a	unique	minimizer	$∗ in	!.

You	can	query	an	oracle	at	$ to	get	)($), ∇ )($)
(exact	info,	no	noise).

Task:	find	a	ball	of	radius	&/5 containing	$∗.

Least	number	of	oracle	queries	necessary?

<

!()*
=
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What happens inℝ!?
If	ℳ = ℝ':

Gradient	Descent	(GD)
$()* = $( − 3∇) $(

4 0 oracle	queries.

Nesterov’s	Accelerated	Gradient	method	(NAG)
5( = $( + 1 − 8 9(
$()* = 5( − 3∇) 5(
9()* = $()* − $(

:4 0 oracle	queries.

NAG	has	optimal	oracle	complexity;	GD	does	not.
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Optimal	methods

What	about	on	Riemannian	manifolds?

Riemannian	GD	(RGD)	requires	> ? oracle	queries (when	for	example	ℳ is	a	
hyperbolic	space).

!,-' = exp.!(−D grad +(!,))

Is	there	an	algorithm	using	only	 F> ? queries	in	general?
Riemannian	NAG?
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Riemannian	GD	(RGD)	requires	> ? oracle	queries (when	for	example	ℳ is	a	
hyperbolic	space).

!,-' = exp.!(−D grad +(!,))

Is	there	an	algorithm	using	only	 F> ? queries	in	general?

Partial	positive	result	(Zhang,	Ahn,	Sra,	Alimisis	et	al.):	you	can	accelerate	locally	(=
small),	'eventually.’
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Optimal	methods

What	about	on	Riemannian	manifolds?

Riemannian	GD	(RGD)	requires	> ? oracle	queries (when	for	example	ℳ is	a	
hyperbolic	space).

!,-' = exp.!(−D grad +(!,))

Is	there	an	algorithm	using	only	 F> ? queries	in	general?

Partial	positive result	(Zhang,	Ahn,	Sra,	Martinez-Rubio,	Alimisis,	et	al.):	you	can	
accelerate	in	some	cases	(e.g.,	= small).



Main	results
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Let	ℳ be	a	Hadamard	manifold	of	dimension	; ≥ 2whose	sectional	curvatures	are	in	
the	interval	[K+,, K-.]with	K-. < 0.
Let	& = C/ 0 / −D+,.

For	every	deterministic	algorithm	E,	there	is	a	F0 function	) which	is	
• 1-strongly	g-convex	in	all	of	ℳ;

• 0-smooth	in	the	geodesic	ball	!($1!2324, &);
• and	has	(unique)	minimizer	in	!($1!2324, ¾ &);
such	that	algorithm	E requires	at	least

Ω
D-.
D+,

0
log 0

queries	in	order	to	find	a	point	$ ∈ ℳ within	&/5 of	the	minimizer	of	).

For	hyperbolic	spaces,	
/!" = /#$ = / < 0
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Let	ℳ be	a	Hadamard	manifold	of	dimension	; ≥ 2whose	sectional	curvatures	are	in	
the	interval	[K+,, K-.]with	K-. < 0.
Let	& = C/ 0 / −D+,.

For	every	deterministic	algorithm	E,	there	is	a	F0 function	) which	is	
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• 0-smooth	in	the	geodesic	ball	!($1!2324, &);
• and	has	(unique)	minimizer	in	!($1!2324, &);
such	that	algorithm	E requires	at	least

Ω
D-.
D+,

0
log 0

queries	in	order	to	find	a	point	$ ∈ ℳ within	&/5 of	the	minimizer	of	).

, - rate	is	impossible;
RGD	is	optimal	(up	to	log).⟹



Other	settings
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!×! positive	definite	matrices with	affine-invariant	metric.

Smooth	nonstrongly g-convex	optimization	($ = 0).

Nonsmooth g-convex	optimization.



Negative	curvature

Geodesic	ball	volumes	grow	much	faster	in	
negatively	curved	spaces	than	flat	spaces.

It’s	harder	to	find	a	point	in	a	ball	just	because	
there's	so	much	more	space	to	explore.

How	many	disjoint	balls	of	radius	=/5 contained	in	
every	ball	of	radius	=?

I3(5!) in	hyperbolic	space
I3(!) in Euclidean space
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(exponentially	many	of	these)	
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Future	directions

31

Tighter	upper/lower	bounds,	e.g.,	Kim	and Yang	(2022)

Randomized	algorithms	which	receive	exact	information?

Ellipsoid	method?
Interior-point	methods?
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Proof	technique



Proof	technique

Hamilton	and	Moitra	consider	the	
functions

% ↦ 1
2dist %, 3$

%, 4 = 1, … , 7

Show	that	in	expectation	(over	noisiness	
of	queries),	any	algorithm	makes	at	most	
limited	progress	per	query.

Since	7 = 8&(()),	they	get	the	lower	
bound	Ω +

,-. + . Ball	of	radius	!"
(exponentially	many	of	these)	
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Hamilton	and	Moitra	consider	the	
functions

% ↦ 1
2dist %, 3$

%, 4 = 1, … , 7

Gradients	of	these	functions	point	
directly	towards	the	minimizer
• Ok	if	there	is	noise
• A	problem	if	queries	are	exact

Ball	of	radius	!"
(exponentially	many	of	these)	

Ball	of	radius	'

(#
($

(%



Proof	technique
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Our	solution:
The	hard	functions	we	consider	are	squared	distance	functions	plus	a	
perturbation	

( ↦ 1
2dist (, 1)

* +3),, ( , Hess 3),, ( ≤ 1
2 .

For	any	algorithm,	the	perturbation	3),, is	constructed	adversarially
using	a	resisting	oracle.



Proof	technique
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Our	solution:
Perturbation	is	a	sum	of	bump	functions

H),, ( = 8
-./

,
ℎ),-

One	bump	function	ℎ),- is	added	for	each	query	made	by	the	algorithm.

Support	of	the	bump	ℎ),- is	centered	at	the	the	query	(- .noise	in	proof	
of	Hamilton	and	Moitra.
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Appendix
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5 −7

1000

1
1

0

: ≈ 5 −7

What	we	know	(for	hyperbolic	spaces)



Main	results
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!×! positive	definite	matrices with	affine-invariant	metric

It	is	Hadamard,	but	does	not	satisfy	assumptions	of	previous	
theorem:	sectional	curvature	can	be	zero.

Still,	can	prove	the	lower	bound	Ω /
1

2
345 2 .
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Nonstrongly g-convex	case
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Can	also	show	that	acceleration	is	impossible	in	the	nonstrongly	g-
convex	case	($ = 0).
Have	the	lower	bound	Ω /

6 ⋅
/

345! 6"# for	finding	a	point	( with	
< ( − < (7 ≤ >.

Means	a	version	of	RGD	is	optimal.

Compare	with	NAG,	which	uses	at	most	? /
6 queries	in	Euclidean	

spaces.	



Nonstrongly g-convex	case

44

Can	also	show	that	acceleration	is	impossible	in	the	nonstrongly	g-
convex	case	($ = 0).
Have	the	lower	bound	Ω /

6 ⋅
/

345! 6"# for	finding	a	point	( with	
< ( − < (∗ ≤ >.

Means	a	version	of	RGD	is	optimal.

Compare	with	NAG,	which	uses	at	most	? /
6 queries	in	Euclidean	

spaces.	



Nonstrongly g-convex	case

45

Can	also	show	that	acceleration	is	impossible	in	the	nonstrongly	g-
convex	case	($ = 0).
Have	the	lower	bound	Ω /

6 ⋅
/

345! 6"# for	finding	a	point	( with	
< ( − < (∗ ≤ >.

Means	a	version	of	RGD	is	optimal.

Compare	with	NAG,	which	uses	at	most	? /
6 queries	in	Euclidean	

spaces.	



46

Applications
• Fréchet	mean	(intrinsic	averaging	on	Hadamard	spaces)	(e.g.,	Karcher)
• Gaussian	mixture	models	(Hosseini	+	Sra)
• Optimistic	likelihoods	for	Gaussians	(Nguyen	et	al.)
• Robust	Covariance	estimation	(Weisel	+	Zhang,	Franks	+	Moitra)
• Metric	learning	(Zadeh	et	al.)
• Variants	on	PCA	(Tang	+	Allen)	[MLEs	for	matrix	normal	models]
• Operator/tensor	scaling	(Allen	Zhu	et	al.,	Burgisser	et	al.)

• Brascamp-Lieb	constants,	computational	complexity,	polynomial	identity	testing,	
hardness	of	robust	subspace	recovery,	etc.

• Tree-like	embeddings	(Bacak)
• Sampling	on	Riemannian	manifolds	(Goyal	+	Shetty)
• Landscape	analysis	(e.g.,	Ahn	+	Suarez)
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Application:	robust	covariance	estimation

IID	samples	!< ∈ ℝ=, S = 1,… , U,	coming	from	an	elliptical	distribution:
! ∼ W Σ'/;Y

where	Σ ≻ 0 is	fixed	(the	shape	matrix),	W is	a	scalar	r.v.,	and	Y ∼ Z=&'.

Tyler’s	M-estimator	for	the	shape	matrix:

\Σ = argmin
?≻A, C( ? D=

^
U
_
<D'

"
log !<

$Σ&'!< + log det Σ

Can	also	be	derived	as	an	MLE.
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Application:	robust	covariance	estimation

IID	samples	!< ∈ ℝ=, S = 1,… , U,	coming	from	an	elliptical	distribution:
! ∼ W Σ'/;Y

where	Σ ≻ 0 is	fixed	(the	shape	matrix),	W is	a	scalar	r.v.,	and	Y ∼ Z=&'.

Tyler’s	M-estimator	for	the	shape	matrix:

\Σ = argmin
?≻A, C( ? D=

^
U
_
<D'

"
log !<

$Σ&'!< + log det Σ

Is	g-convex for	PD	matrices	(with	affine-invariant	metric).
→ new	algorithms/analysis	+	analysis	for	Tyler’s	iterative	procedure
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Application:	robust	covariance	estimation

IID	samples	!< ∈ ℝ=, S = 1,… , U,	coming	from	an	elliptical	distribution:
! ∼ W Σ'/;Y

where	Σ ≻ 0 is	fixed	(the	shape	matrix),	W is	a	scalar	r.v.,	and	Y ∼ Z=&'.

Tyler’s	M-estimator	for	the	shape	matrix:

\Σ = argmin
?≻A, C( ? D=

^
U
_
<D'

"
log !<

$Σ&'!< + log det Σ

Is	a	specific	instance	of	the	operator	scaling	problem.

Sources:	Weisel	+	Zhang,	Franks	+	Moitra


