
Negative	curvature	obstructs	
acceleration	for	g-convex	optimization,	

even	with	exact	first-order	oracles
ICCOPT	2022,	July	25

Chris	Criscitiello
Nicolas	Boumal

OPTIM,	Chair	of	Continuous	Optimization
Institute	of	Mathematics,	EPFL



Question

Is	there	a	fully	accelerated	first-order algorithm	for	
geodesically convex	optimization	with	exact	oracles?

2



Question

Is	there	a	fully	accelerated	first-order	algorithm	for	
geodesically	convex	optimization	with	exact	oracles?

Short	answer:	No.

3



Question

Is	there	a	fully	accelerated	first-order	algorithm	for	
geodesically convex	optimization	with	exact	oracles?

Short	answer:	No.
Slightly	longer	answer:	We	show	there	are	Riemannian	manifolds	and	
regimes where	gradient	descent	is	optimal	(worst-case	complexity).

4



Question

Is	there	a	fully	accelerated	first-order	algorithm	for	
geodesically convex	optimization	with	exact	oracles?

Short	answer:	No.
Slightly	longer	answer:	We	show	there	are	Riemannian	manifolds	and	
regimes where	gradient	descent	is	optimal	(worst-case	complexity).
Why?	The	volume	of	a	ball	in	negatively	curved	spaces	is	very	large.
Builds	on	work	of	Hamilton	and	Moitra	(2021),	who	show	the	answer	is	no	
when	algorithms	receive	noisy information.

5Hamilton	and	Moitra:	“A	No-Go	Theorem	for	Acceleration	in	the	Hyperbolic	Plane”	(2021)



Optimization	on	manifolds

min!∈#⊂ℳ $ %

ℳ is	a	Riemannian	manifold

What	is	a	Riemannian	manifold?
• Smooth	manifold
• Notion	of	distance	(Riemannian	metric)
• Geodesics:	locally	shortest	paths.

is	convex	for	any	geodesic	! in	".
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Not	geodesics
Geodesic



Geodesically	convex	optimization

min!∈#⊂ℳ $ %

Search	space	' is	a	g-convex subset	of	a	Riemannian manifold	ℳ:

For	each	#, % ∈ ",	there	is	a	unique	minimizing	geodesic	' ↦ !(') contained	
in	",	connecting	#, %.

Cost $ is +-strongly g-convex:	
' ↦ + ! '

is	,-strongly	convex	for	any	geodesic	! in	".
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Hadamard	manifolds
Complete,	simply	connected,	with	non-positive	(intrinsic)	curvature.

Euclidean	space:	ℳ = ℝ!

Hyperbolic	space

Positive	definite	matrices:	ℳ = 0 ∈ 1"×": 0 = 0$ and 0 ≻ 0

with	affine-invariant	metric	 8, 9 % = Tr 0&'80&'9 .

Non-example:	Sphere



13

Hadamard	manifolds
Complete,	simply	connected,	with	non-positive	(intrinsic)	curvature.

Euclidean	space:	ℳ = ℝ!

Hyperbolic	space

Positive	definite	matrices:	ℳ = 0 ∈ 1"×": 0 = 0$ and 0 ≻ 0

with	affine-invariant	metric	 8, 9 % = Tr 0&'80&'9 .

Non-example:	Sphere



14

Hadamard	manifolds
Complete,	simply	connected,	with	non-positive	(intrinsic)	curvature.

Euclidean	space:	ℳ = ℝ!

Hyperbolic	space

Positive	definite	matrices:	ℳ = 0 ∈ 1"×": 0 = 0$ and 0 ≻ 0

with	affine-invariant	metric	 8, 9 % = Tr 0&'80&'9 .

Non-example:	Sphere



15

Hadamard	manifolds
Complete,	simply	connected,	with	non-positive	(intrinsic)	curvature.

Euclidean	space:	ℳ = ℝ!

Hyperbolic	space

Positive	definite	matrices:	ℳ = 0 ∈ 1"×": 0 = 0$ and 0 ≻ 0

with	affine-invariant	metric	 8, 9 % = Tr 0&'80&'9 .

Non-example:	Sphere



16

Applications
• Fréchet	mean	(intrinsic	averaging	on	Hadamard	spaces)	(e.g.,	Karcher)
• Gaussian	mixture	models	(Hosseini	+	Sra)
• Optimistic	likelihoods	for	Gaussians	(Nguyen	et	al.)
• Robust	Covariance	estimation	(Weisel	+	Zhang,	Franks	+	Moitra)
• Metric	learning	(Zadeh	et	al.)
• Variants	on	PCA	(Tang	+	Allen)	[MLEs	for	matrix	normal	models]
• Operator/tensor	scaling	(Allen	Zhu	et	al.,	Burgisser	et	al.)

• Brascamp-Lieb	constants,	computational	complexity,	polynomial	identity	testing,	
hardness	of	robust	subspace	recovery,	etc.

• Tree-like	embeddings	(Bacak)
• Sampling	on	Riemannian	manifolds	(Goyal	+	Shetty)
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Computational	task
Geodesic	ball	! = !($!"#, &) of	radius	& in	Hadamard	space	ℳ.

You	know:
• ) is	*-smooth	in	! and +-strongly	convex	in	ℳ;
• ) has	a	unique	minimizer	$∗ in	!.

You	can	query	an	oracle	at	$ to	get	)($), ∇ )($)
(exact	info,	no	noise).

Task:	find	a	ball	of	radius	&/5 containing	$∗.

Least	number	of	oracle	queries	necessary?

<

#()*
=
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What	happens	in	ℝ!?
If	ℳ = ℝ':

Gradient	Descent	(GD)
$()* = $( − 7∇) $(

8 0 oracle	queries.

Nesterov’s	Accelerated	Gradient	method	(NAG)
9( = $( + 1 − < =(
$()* = 9( − 7∇) 9(
=()* = $()* − $(

>8 0 oracle	queries.

NAG	has	optimal	oracle	complexity;	GD	does	not.

#,

#∗

<

Condition	number	0 = %
&

#()*
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Optimal	methods
What	about	on	Riemannian	manifolds?

Riemannian	GD	(RGD)	requires	> ? oracle	queries	(when	for	example	ℳ is	a	
hyperbolic	space).

#,-' = exp.!(−D grad +(#,))

Is	there	an	algorithm	using	only	 F> ? queries	in	general?
Riemannian	NAG?
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Optimal	methods
What	about	on	Riemannian	manifolds?

Riemannian	GD	(RGD)	requires	> ? oracle	queries (when	for	example	ℳ is	a	
hyperbolic	space).

#,-' = exp.!(−D grad +(#,))

Is	there	an	algorithm	using	only	 F> ? queries	in	general	(independent	of	=)?

Partial	positive	result	(Zhang,	Ahn,	Sra,	Alimisis	et	al.):	you	can	accelerate	locally	(=
small),	'eventually.’
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Optimal	methods
What	about	on	Riemannian	manifolds?

Riemannian	GD	(RGD)	requires	> ? oracle	queries (when	for	example	ℳ is	a	
hyperbolic	space).

#,-' = exp.!(−D grad +(#,))

Is	there	an	algorithm	using	only	 F> ? queries	in	general (independent	of	=)?

Partial	positive result	(Zhang,	Ahn,	Sra,	Martinez-Rubio,	Alimisis,	et	al.):	you	can	
accelerate	in	some	cases	(e.g.,	= small).



Main	results
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Let	ℳ be	a	Hadamard	manifold	of	dimension	? ≥ 2whose	sectional	curvatures	are	in	
the	interval	[K+,, K-.]with	K-. < 0.
Let	& = G/ 0 / −H+,.

For	every	deterministic	algorithm	I,	there	is	a	J0 function	) which	is	
• 1-strongly	g-convex	in	all	of	ℳ;
• 0-smooth	in	the	geodesic	ball	!($1!2324, &);
• and	has	(unique)	minimizer	in	!($1!2324, ¾ &);
such	that	algorithm	I requires	at	least

Ω
H-.
H+,

0
log 0

queries	in	order	to	find	a	point	$ ∈ ℳ within	&/5 of	the	minimizer	of	).

For	hyperbolic	spaces,	
/!" = /#$ = / < 0
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Let	ℳ be	a	Hadamard	manifold	of	dimension	? ≥ 2whose	sectional	curvatures	are	in	
the	interval	[K+,, K-.]with	K-. < 0.
Let	& = G/ 0 / −H+,.

For	every	deterministic	algorithm	I,	there	is	a	J0 function	) which	is	
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• 0-smooth	in	the	geodesic	ball	!($!"#, &);
• and	has	(unique)	minimizer	in	!($!"#, &);
such	that	algorithm	I requires	at	least

Ω
H-.
H+,

0
log 0

queries	in	order	to	find	a	point	$ ∈ ℳ within	&/5 of	the	minimizer	of	).

, - rate	is	impossible;
RGD	is	optimal	(up	to	log).⟹



Other	settings
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!×! positive	definite	matrices with	affine-invariant	metric.

Smooth	nonstrongly g-convex	optimization	($ = 0).
There	are	regimes	where	GD	is	optimal.

Nonsmooth g-convex	optimization.
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Start	with
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Our	solution: Add perturbations

# ↦
1
2
dist #, S7

8
+U7,, # , Hess U7,, # ≤

1
2
.

The	perturbation	U7,, is	constructed	adversarially	using	a	resisting	oracle.

Perturbation	is	a	sum	of	bump	functions

U7,, # = Y
:;'

,
ℎ7,:
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Future	directions
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Tighter	upper/lower	bounds,	e.g.,	Kim	and	Yang	(2022)
“Accelerated	Gradient	Methods	for	Geodesically Convex	Optimization:	Tractable	Algorithms	and	
Convergence	Analysis”

Randomized	algorithms	which	receive	exact	information?

Ellipsoid	method?
Interior-point	methods?
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Appendix
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5 −7

1000

1
1

+

: ≈ 5 −7

What	we	know	(for	hyperbolic	spaces)
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!×! positive	definite	matrices with	affine-invariant	metric

It	is	Hadamard,	but	does	not	satisfy	assumptions	of	previous	
theorem:	sectional	curvature	can	be	zero.

Still,	can	prove	the	lower	bound	Ω ,
-

.
/01 . .
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Nonstrongly g-convex	case
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Can	also	show	that	acceleration	is	impossible	in	the	nonstrongly	g-
convex	case	($ = 0).
Have	the	lower	bound	Ω ,

2 ⋅
,

/01! 2"# for	finding	a	point	( with	
7 ( − 7 (3 ≤ :.

Means	a	version	of	RGD	is	optimal.

Compare	with	NAG,	which	uses	at	most	; ,
2 queries	in	Euclidean	

spaces.	
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Application:	robust	covariance	estimation
IID	samples	#@ ∈ ℝA, [ = 1,… , ],	coming	from	an	elliptical	distribution:

# ∼ _ Σ'/8a
where	Σ ≻ 0 is	fixed	(the	shape	matrix),	_ is	a	scalar	r.v.,	and	a ∼ bA&'.

Tyler’s	M-estimator	for	the	shape	matrix:

cΣ = argmin
C≻E, F( C ;A

e
]
Y
@;'

"
log #@

$Σ&'#@ + log det Σ

Can	also	be	derived	as	an	MLE.
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Application:	robust	covariance	estimation
IID	samples	#@ ∈ ℝA, [ = 1,… , ],	coming	from	an	elliptical	distribution:

# ∼ _ Σ'/8a
where	Σ ≻ 0 is	fixed	(the	shape	matrix),	_ is	a	scalar	r.v.,	and	a ∼ bA&'.

Tyler’s	M-estimator	for	the	shape	matrix:

cΣ = argmin
C≻E, F( C ;A

e
]
Y
@;'

"
log #@

$Σ&'#@ + log det Σ

Is	g-convex for	PD	matrices	(with	affine-invariant	metric).
→ new	algorithms/analysis	+	analysis	for	Tyler’s	iterative	procedure
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Application:	robust	covariance	estimation
IID	samples	#@ ∈ ℝA, [ = 1,… , ],	coming	from	an	elliptical	distribution:

# ∼ _ Σ'/8a
where	Σ ≻ 0 is	fixed	(the	shape	matrix),	_ is	a	scalar	r.v.,	and	a ∼ bA&'.

Tyler’s	M-estimator	for	the	shape	matrix:

cΣ = argmin
C≻E, F( C ;A

e
]
Y
@;'

"
log #@

$Σ&'#@ + log det Σ

Is	a	specific	instance	of	the	operator	scaling	problem.

Sources:	Weisel	+	Zhang,	Franks	+	Moitra


